数据结构与算法系列之一:八大排序之选择排序



选择排序

前言

  建议先看排序综述,传送门:数据结构与算法系列之一:八大排序综述

简介

  选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

  选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对 n 个元素的表进行排序总共进行至多 n1 次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。

步骤

  • 找到列表中的最小值。
  • 把它和第一个位置的元素交换。
  • 列表其余部分重复上面的步骤(从第二个位置开始,且每次加1)。

演示

  wikipedia的大数据规模演示:

selectsort from wikipedia

  wordzzzz的小数据规模演示:

selectsort from wordzzzz

代码

/*
*直接选择排序
*/

template <typename T>
void SelectSort(T *array, const int length) {
    if (array == NULL)
        throw invalid_argument("Array must not be empty");
    if (length <= 0)
        return;

    for (int i = 0; i < length - 1; ++i){       //外循环,每次选出一个最小的元素放到前面
        int min = i;
        for (int j = i + 1; j < length; ++j)    //内循环,确定最小元素的下标
            if (array[j] < array[min])
                min = j;
        if (min != i){                          //如果当前数据不是最小元素,就交换
            T tmp = array[i];
            array[i] = array[min];
            array[min] = tmp;
        }
    }
}

算法复杂度

  • 数据结构 数组
  • 最坏时间复杂度 O(n2)
  • 最优时间复杂度 O(n2)
  • 平均时间复杂度 O(n2)
  • 空间复杂度 O(n) total, O(1) auxiliary

分析

  选择排序的交换操作介于 0 (n1) 次之间。选择排序的比较操作为 n(n1)/2 次之间。选择排序的赋值操作介于 0 3(n1) 次之间。

  比较次数 O(n2) ,比较次数与关键字的初始状态无关,总的比较次数 N=(n1)+(n2)+...+1=n×(n1)/2 。交换次数 O(n) ,最好情况是,已经有序,交换0次;最坏情况是,逆序,交换 n1CPUCPU {\displaystyle n}$ 值较小时,选择排序比冒泡排序快。

  原地操作几乎是选择排序的唯一优点,当空间复杂度要求较高时,可以考虑选择排序;实际适用的场合非常罕见。

系列教程持续发布中,欢迎订阅、关注、收藏、评论、点赞哦~~( ̄▽ ̄~)~

完的汪(∪。∪)。。。zzz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值