数据结构与算法系列之一:八大排序之基数排序



基数排序

前言

  建议先看排序综述,传送门:数据结构与算法系列之一:八大排序综述

简介

  基数排序(英语:Radix sort)是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。基数排序的发明可以追溯到1887年赫尔曼·何乐礼在打孔卡片制表机(Tabulation Machine)上的贡献。

  基数排序法会使用到桶 (Bucket),顾名思义,通过将要比较的位(个位、十位、百位…),将要排序的元素分配至 0~9 个桶中,借以达到排序的作用,在某些时候,基数排序法的效率高于其它的比较性排序法。

步骤

  它是这样实现的:

  • 将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。
  • 然后,从最低位开始,依次进行一次排序。
  • 这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。

  基数排序的方式可以采用LSD(Least significant digital)或MSD(Most significant digital),LSD的排序方式由键值的最右边开始,而MSD则相反,由键值的最左边开始。

演示

  wordzzzz的小数据规模演示:

radixsort from wordzzzz

代码

/*
 * 获取数组a中最大值
 */
template<typename T>
int get_max(T *array, const int length)
{
    int i, max;

    max = array[0];
    for (i = 1; i < length; i++)
        if (array[i] > max)
            max = array[i];
    return max;
}

/*
 * 对数组按照"某个位数"进行排序(桶排序)
 */
template<typename T>
void count_sort(T *array, const int length, int exp)
{
    T* output = (T*)malloc(sizeof(T) * length);

    if (output == NULL)
    {
        fputs("Error: out of memory\n", stderr);
        abort();
    }
    int i, buckets[10] = { 0 };

    for (i = 0; i < length; i++)                    // 将数据出现的次数存储在buckets[]中
        buckets[(array[i] / exp) % 10]++;

    for (i = 1; i < 10; i++)                        // 更改buckets[i]。目的是让更改后的buckets[i]的值,是该数据在output[]中的位置。
        buckets[i] += buckets[i - 1];

    for (i = length - 1; i >= 0; i--)               // 将数据存储到临时数组output[]中,这里的对应关系一定要捋清楚
        output[--buckets[(array[i] / exp) % 10]] = array[i];

    for (i = 0; i < length; i++)                    // 将排序好的数据赋值给array[]
        array[i] = output[i];
}

/*
 * 基数排序
 */
template<typename T>
void RadixSort(T *array, const int length)
{
    int exp;                                        // 指数。当对数组按各位进行排序时,exp=1;按十位进行排序时,exp=10;...
    int max = get_max(array, length);               // 数组array中的最大值

    for (exp = 1; max / exp > 0; exp *= 10)         // 从个位开始,对数组array按"指数"进行排序
        count_sort(array, length, exp);
}

算法复杂度

  • 数据结构 数组
  • 平均时间复杂度 O(d(n+r))
  • 最好情况 O(d(n+r))
  • 最坏情况 O(d(n+r))
  • 空间复杂度 O(n+r)

  其中,d 为位数,r 为基数,n 为原数组个数。在基数排序中,因为没有比较操作,所以在复杂上,最好的情况与最坏的情况在时间上是一致的,均为 O(d*(n + r))。

分析

  如果捋不清上述代码中的数组对应关系,可以参考一下下面这两张图的讲解,来源:http://www.cnblogs.com/skywang12345/p/3603669.html

  • 个位的数值范围是[0,10)。因此,参见桶数组buckets[],将数组按照个位数值添加到桶中。

step1

  • 接着是根据桶数组buckets[]来进行排序。假设将排序后的数组存在output[]中;找出output[]和buckets[]之间的联系就可以对数据进行排序了。

step2

  基数排序不改变相同元素之间的相对顺序,因此它是稳定的排序算法。

  基数排序 vs 计数排序 vs 桶排序

这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:

  • 基数排序:根据键值的每位数字来分配桶
  • 计数排序:每个桶只存储单一键值
  • 桶排序:每个桶存储一定范围的数值

系列教程持续发布中,欢迎订阅、关注、收藏、评论、点赞哦~~( ̄▽ ̄~)~

完的汪(∪。∪)。。。zzz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值