ps:虽然是转载的,但是代码是自己重新写过的。
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
基本思想:
堆的定义如下:具有n个元素的序列(k1,k2,...,kn),当且仅当满足

时称之为堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最小项(小顶堆)。
若以一维数组存储一个堆,则堆对应一棵完全二叉树,且所有非叶结点的值均不大于(或不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大)的。如:
(a)大顶堆序列:(96, 83,27,38,11,09)
(b) 小顶堆序列:(12,36,24,85,47,30,53,91)
初始时把要排序的n个数的序列看作是一棵顺序存储的二叉树(一维数组存储二叉树),调整它们的存储序,使之成为一个堆,将堆顶元素输出,得到n 个元素中最小(或最大)的元素,这时堆的根节点的数最小(或者最大)。然后对前面(n-1)个元素重新调整使之成为堆,输出堆顶元素,得到n 个元素中次小(或次大)的元素。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。称这个过程为堆排序。
因此,实现堆排序需解决两个问题:
1. 如何将n 个待排序的数建成堆;
2. 输出堆顶元素后,怎样调整剩余n-1 个元素,使其成为一个新堆。
首先讨论第二个问题:输出堆顶元素后,对剩余n-1元素重新建成堆的调整过程。
调整小顶堆的方法:
1)设有m 个元素的堆,输出堆顶元素后,剩下m-1 个元素。将堆底元素送入堆顶((最后一个元素与堆顶进行交换),堆被破坏,其原因仅是根结点不满足堆的性质。
2)将根结点与左、右子树中较小元素的进行交换。
3)若与左子树交换:如果左子树堆被破坏,即左子树的根结点不满足堆的性质,则重复方法 (2).
4)若与右子树交换,如果右子树堆被破坏,即右子树的根结点不满足堆的性质。则重复方法 (2).
5)继续对不满足堆性质的子树进行上述交换操作,直到叶子结点,堆被建成。
称这个自根结点到叶子结点的调整过程为筛选。如图:
再讨论对n 个元素初始建堆的过程。
建堆方法:对初始序列建堆的过程,就是一个反复进行筛选的过程。
1)n 个结点的完全二叉树,则最后一个结点是第个结点的子树。
2)筛选从第个结点为根的子树开始,该子树成为堆。
3)之后向前依次对各结点为根的子树进行筛选,使之成为堆,直到根结点。
如图建堆初始过程:无序序列:(49,38,65,97,76,13,27,49)
算法的实现:
#include <iostream>
using namespace std;
void Print(int a[], int n)
{
for (int i = 0;i < n;i++)
{
cout << a[i] << " ";
}
cout << endl;
}
void Swap(int & p, int & q)
{
int tmp = p;
p = q;
q = tmp;
}
void HeapNode(int a[], int n, int node)
{
int child = node * 2 + 1;//parent节点的左子节点
if (child + 1 < n && a[child] < a[child + 1])//如果存在右节点,比较左右子节点的大小,记录较大的子节点
child++;
if (child < n && a[node] < a[child])//如果子节点存在并且parent的值小于子节点
{
Swap(a[node], a[child]);//交换
Print(a, n);
HeapNode(a, n, child);//继续调整交换过的子节点为堆
}
}
void HeapSort(int a[], int n)
{
//从第(n - 1) / 2个节点开始建立堆,是因为从这个点开始有孩子节点
for (int i = (n - 1) / 2;i >= 0;i--)
{
HeapNode(a, n, i);
}
cout << "heap adjest " << endl;
Print(a, n);
Swap(a[0], a[n - 1]);//大根堆,把根节点与未排序的最后一个节点的值交换
int p = n - 1;//数组未排序的长度
while (p > 1)
{
HeapNode(a, p, 0);//重新调整跟节点为堆
Swap(a[0], a[p - 1]);//大根堆,把根节点与未排序的最后一个节点的值交换
p--;
}
cout << "end with ";
Print(a, n);
}
int main()
{
int a[] = { 3,9,6,5,7,2,4,10,8,1 };
HeapSort(a, 10);
system("pause");
}
分析:
设树深度为k,。从根到叶的筛选,元素比较次数至多2(k-1)次,交换记录至多k 次。所以,在建好堆后,排序过程中的筛选次数不超过下式:
而建堆时的比较次数不超过4n 次,因此堆排序最坏情况下,时间复杂度也为:O(nlogn )。