Problem Description:
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)解法:注意不能输出重复子集,因此代码中用到upper_bound()函数找到下一个不重复的数,代码如下:
class Solution {
public:
vector<vector<int> > threeSum(vector<int> &num) {
vector<vector<int> > results;
if(num.size()<3) return results;
vector<int> subset;
sort(num.begin(),num.end());
vector<int>::iterator p=num.begin(),q,flag;
while(p<(num.end()-2))
{
q=p+1;
while(q<num.end()-1)
{
int tag=0-*p-*q;
if(find(q+1,num.end(),tag)!=num.end())
{
flag=find(q+1,num.end(),tag);
subset.push_back(*p);
subset.push_back(*q);
subset.push_back(*flag);
results.push_back(subset);
}
subset.clear();
q=upper_bound(q,num.end()-1,*q);
}
p=upper_bound(p,num.end()-2,*p);
}
return results;
}
};