question
- 有一道选择题,
ABC
三个选项,一个正确答案, 假设你选择了A,但是通过计算知道C是错误答案,问B是正确答案的概率是多少.
这道题有人认为A应该和
B,C
分开, 利用部分整体思想, 此时B应该共享C的概率, 因此B正确的概率应为2/3
answers
逻辑分析
A, B, C
三个选项里面有一个是正确答案, 三个组成一个整体, 通过计算知道C是错误答案, 此时A, B均没有被C的结果所影响(或者说均被被C的结果所影响), 此时A,B应该在一起, 共享剩余的概率, 结果为1/2
概率统计模型分析(穷举法)
在同样条件下,多次进行同一试验或调查同一现象,所的结果不完全一样,而且无法准确地预测下一次所得结果的现象。但如果同类的随机现象大量重复出现,它的总体就呈现出一定的规律性。大量同类随机现象所呈现的这种规律性,随着我们观察的次数的增多而愈加明显。这种由大量同类随机现象所呈现出来的集体规律性,叫做统计规律性。概率论和数理统计就是研究大量同类随机现象的统计规律性的数学学科。
简单的说, 就是通过大量统计来证实事物的概率, 一共三道题, 经过无数次的统计(懒得统计,直接分析), 大体上就是有三种情况().
情况 | 概率 | 简写(大写为对的情况) |
---|---|---|
A是正确答案 | 1/3 | A b c |
B是正确答案 | 1/3 | a B c |
C是正确答案 | 1/3 | a b C |
选择了A, 但是通过计算C是错误答案, 那么a b C
明显不符合这种情况, 直接排除, 那么就只剩下1/3
的A b c
和1/3
的a B c
, 1/3
的情况在2/3
的概率里面明显是1/2
.
这个问题容易和三门问题搞混, 三门问题是什么, 让我们还原一下.
“假设你正在参加一个游戏节目,你被要求在三扇门中选择一扇:其中一扇后面有一辆车;其余两扇后面则是山羊。你选择了一道门,假设是一号门,然后知道门后面有什么的主持人,开启了另一扇后面有山羊的门,假设是三号门。他然后问你:“你想选择二号门吗?”转换你的选择对你来说是一种优势吗?”
让我们确定一下要素
- 现在有三扇门,只有一扇门有汽车,其余两扇门的都是山羊。
- 汽车事前是等可能地被放置于三扇门的其中一扇后面。
- 参赛者在三扇门中挑选一扇。他在挑选前并不知道任意一扇门后面是什麽。
- 主持人知道每扇门后面有什么。
- 如果参赛者挑了一扇有山羊的门,主持人必须挑另一扇有山羊的门。
- 如果参赛者挑了一扇有汽车的门,主持人等可能地在另外两扇有山羊的门中挑一扇门。
我们发现和上面ABC
选择题的区别是, 主持人在另外两扇门里面必须挑一个有山羊的门, 而上面ABC
选择题是仅仅通过验证C得出C是错误答案. 而不是在B,C
里面挑一到错题.
接下来同样把三门问题利用上面的穷举法进行分析.
假如ABC
选择题情况变成是从B,C
里面挑出一道错题的话, 这样会发现, 无论上面表格里的哪种情况, 都不会被排除
, 无论哪种情况发生都能够找到错题, 结果是排除一个选项之后A是正确答案的情况依然是1/3
, B或C的概率变成2/3
, 因为在以B,C
为集合的情况下(注意这是基准是以B,C
为整体的概率, B,C
里面必有一道题是错的, 此时将A隔离了出去), 挑出了一道错题. 这个情况将A隔离了出去, 所以这种情况应该用部分整体划分的思想.
增多选项
如果还不理解的话, 不妨增大n值(增多选项), 不再是A,B,C
了, 而是A,B,C,D.......Y,Z
, 一个正确答案, 假设你选择了A,但是通过计算知道C,D.......Y,Z
是错误答案,问此时B是正确答案的概率是多少.
再如
假如有70亿个小球, 只有一个是红色, 你从里面选了一个, 然后剩余的发给全世界所有人, 所有人里面除了一个人(友人A)之外,其他人全部被验证是蓝色的球, 那么问友人A的球是红色的概率是多少,
根据B选项共享C选项的理论, 你觉得此时友人A的球是红色的概率会是(70亿-1) /70亿
吗?