一道经典概率问题

一道经典概率问题
May 8th, 2007 by jfish 
网上流传这样一个有趣的问题,标题一般叫“一道引起全美大学生举国辩论的逻辑题”,题目内容大致如下:

假设你在进行一个游戏节目。现给三扇门供你选择:一扇门后面是一辆轿车,另两扇门后面分别都是一头山羊。你的目的当然是要想得到比较值钱的轿车,但你却并不能看到门后面的真实情况。主持人先让你作第一次选择。在你选择了一扇门后,知道其余两扇门后面是什么的主持人,打开了另一扇门给你看,而且,当然,那里有一头山羊。现在主持人告诉你,你还有一次选择的机会。那么,请你考虑一下,你是坚持第一次的选择不变,还是改变第一次的选择,更有可能得到轿车?

Google了一下,其实这道题是很有背景的,英文叫“Monty Hall problem”。类似的问题早在40多年前就发布在《Scientific American》杂志上。在1975年的时候,这个问题被发表在《American Statistician》上,直到1990年,Marilyn vos Savant在《American Parade Magazine》自己的专栏里面,描述了一个叫“Let’s Make a Deal”的TV Game Show,具体内容就是上面的那个游戏节目。

这道题我去年在一个博客里面见到过,最后想来想去,觉得还是要换,为什么换自己没有想清楚。五一时候,跟同学聊天偶然说起这个问题,他坚持不换,认为这是一个典型的抽签模型,你抽了一签没打开,还剩两个签,主持人打开一个,还剩一个,你手中的和剩下的签概率是均等的,为啥要换呢?

大概这里就是迷惑人的地方,现在只剩了两个门,里面有车的概率一半一半,为何要换呢?看到这里,你可以先想一想自己的观点,然后听一下我的理解。

真的是一半一半吗?其实在这个结果里面,你使用了一个隐含的前提,那就是主持人是不知道另外两个门里面哪个是车。也就是说,只有主持人不知道哪个里面有车,随便打开一个门的时候,换与不换得到车的概率才是均等的。当然,这个假设是和题目条件矛盾的,所以你选择的门和剩余一个门里面有车的概率也是不同的。

究竟是多少呢?看一下都有哪种情况

A—B—C(A:代表车在哪个门里面 B:代表选择了哪个门 C:代表换之后是否可以得到车T表示得到,F表示没有)

1—1— F

1—2—T

1—3—T

2—1—T

2—2—F

2—3—T

3—1—T

3—2—T

3—3—F

从上面的列表可以看出,总共9种可能性中,有3次可以直接选中汽车,如果不换,有1/3的概率得到汽车。而这9种情况中,如果每次都换,第一次没有选中汽车的在第二次都可以选中,而之前选对的1/3概率都变成了不中。所以,如果换,得到汽车的概率是2/3。一定要换!

换一种分析方法

设门后面分别为羊A,羊B,车,你第一次选中其中一个的概率是1/3

当你选中羊A时,主持人给你看羊B,如果换,这个时候肯定得到车,所以,这种情况占1/3概率

选中羊B与选中羊A是一样的,结果也肯定得到车,占1/3概率

而当你选择车时,主持人有一半的概率会给你看羊A,也就是,你有1/6的概率选择车,然后换成羊B;同样1/6的概率选择了车,又换成羊A。

上述两个1/3加上两个1/6等于1,没有问题。

前天写了个Java程序(下载),模拟整个过程,让这个游戏跑10000次,结果也是这样,换了得到车的概率是不换的两倍。如果有兴趣可以下载下来跑一下。主持人、玩家、门三个类都有自己独立的随机数产生器对象,减少了随机数对整个模拟过程的影响。代码没写注释,大家将就着看吧……

补:大家可以想一下下面这个问题和上面这个题有什么不一样。

在开心辞典上,王小丫问了你一道有三个选项的选择题,你实在不知道该选哪一个,就随便说了一个答案。说完之后,你觉得应该让电脑去掉一个错误答案,这样命中率会高一些。电脑去掉一个错误答案后,只剩下两个选项,这个时候要不要和刚才你选的答案换呢?

原文链接:http://weweup.blog.sohu.com/45749209.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值