SOLR 5.0安装 使用内置脚本安装

solr 安装脚本(bin/install_solr_service.sh)  the script only supports Red Hat, Ubuntu, Debian, and SUSE Linux distributions.

建议将使用中的solr文件  例如logs 文件  索引文件 从Solr分布式中分离出来,以方便系统升级
Solr 安装目录
默认的Solr脚本会将分布式文件copy 到/opt 目录中

可以使用   参数-i改变安装目录,如果你运行的是Solr5.0.0的脚本则一下的目录结构可能用上
/opt/solr-5.0.0
/opt/solr ->/opt/solr-5.0.0
使用特殊的目录链接来区分不同Solr版本的独立的运行脚本,假设在一段时间过后你需要升级你的Solr你只需要将目录链接指定到最新的Solr的目录版本。
接下来的部分中将演示:使用/opt/solr 来关联solr的安装目录的安装方法。

需要将可写目录分开来放,脚本运行默认目录是 /var/solr  可以使用  参数-d  来指定目录
这样solr在/var/solr 运行时说做出的改变将不会影响/opt/solr目录

创建Solr用户

以root身份运行Solr是不安全的。所以你需要指定系统用户名 来运行solr
可以是用  参数-u 来设置solr用户


运行Solr 安装脚本
将install_solr_service.sh文件从solr-5.0.0.tgz 中解压出来
tar -xzf solr-5.0.0.tgz solr-5.0.0/bin/install_solr_service.sh --strip-component=2
如果安装在小红帽服务器上需要确保安装了 lsof 命令

安装solr需要root权限干的事
在/etc/init.d目录下创建solr目录
安装solr服务
将solr 加入服务

需要删除install_solr_service.sh 中的root用户认证  
/opt 是默认的安装目录 通过-i参数指定
/var/solr 是默认的写数据的默认 通过-d参数指定
-u参数用于指定solr用户
-s 表示指定服务名称
-p表示指定端口号
sudo bash ./install_solr_service.sh solr-5.0.0.tgz -i /opt -d /var/solr -u solr -s solr -p 8983

查看install_solr_service.sh可用账号
sudo bash ./install_solr_service.sh -help



Solr Home Directory 家目录
和Solr 安装目录不同
安装默认的家目录为 /var/solr/data
Solr家目录就是包含solr.xml和索引的目录

Solr启动时solr脚本会使用 -Dsolr.solr.home系统参数传递家目录的路径
Environment overrides include file
include file 也就是启动脚本 solr.in.sh
首先使用的安装更具你的系统重写的include file
修改运行环境配置文件
在solr.in.sh 可以修改SOLR_HOME 和SOLR_PID_DIR目录
SOLR_PID_DIR=/var/s
SOLR_HOME=/var/solr/data

配置日志
copies  /opt/solr/server/resources/log4j.properties  to  /var/solr/log4j.properties 自定义日志格式

在solr.in.sh 中修改日志
LOG4J_PROPS=/var/solr/log4j.properties
SOLR_LOGS_DIR=/var/solr/logs
更多日志格式配置信息查看https://cwiki.apache.org/confluence/display/solr/Configuring+Logging


/etc/init.d 脚本

如果想将solr作为Linux的一个服务。需要配置 init.d文件这样系统管理员才能使用 service命令工具控制solr 例如service solr start
/etc/init.d/solr 
需要注意下这些变量设置:
SOLR_INSTALL_DIR=/opt/solr
SOLR_ENV=/var/solr/solr.in.sh
RUNAS=solr

RUNAS 设置solr线程的所属者
如果你不设置此值这Solr将会以root权限运行,这在生产环境中是不允许的。

启动命令 service solr start

service命令还支持     stop、restart、status参数

微调生产环境设置
内存和GC设置
修改bin/solr SOLR_JAVA_MEM参数
SOLR_JAVA_MEM="-Xms10g -Xmx10g"

通过/var/solr/solr.in.sh 中的 GC_TUNE 参数修改来及回收策略
详细查看 Solr 垃圾回收策略
https://cwiki.apache.org/confluence/display/solr/JVM+Settings


当出现Out-of-Memory 是关闭机制
out of memory shutdown hook(拦截)

The  bin/solr  script registers the  bin/oom_solr.sh  script to be called by the JVM if an OutOfMemoryError occurs. The  oom_solr.sh  script will issue a  kill -9  to the Solr process that experiences the  OutOfMemoryError . This behavior is recommended when running in SolrCloud mode so that ZooKeeper is immediately notified that a node has experienced a non-recoverable error. Take a moment to inspect the contents of the  /opt/solr/bin/oom_solr.sh  script so that you are familiar with the actions the script will perform if it is invoked by the JVM.

SolrCloud

修改includefile  ini.d/solr
如果以SolrCloud 模式运行solr需要在文件头设置ZK_HOST变量指定Zookeeper集并设置SOLR_MODE=solrcloud.内嵌的ZooKeeper不支持生产环境,作为实例如果你有Zookeeper群组,在一下三个主机上使用默认端口2181端口的主机地址(zk1,zk2,zk3)然后可以设置配置变量为
SOLR_MODE=solrcloud
ZK_HOST=zk1,zk2,zk3
通过这个配置可以使脚本以cloud模式启动。


ZooKeeper chroot
ZooKeeper跟目录
如果你的Zookeeper实例与其他系统共用,建议你使用ZooKeeper更目录的支持分离SolrCloud节点树,例如在SolrCloud 所创建的节点存储在/solr目录下可以在配置ZK_HOST时加上
ZK_HOST=zk1,zk2,zk3/solr

如果是第一次使用chroot,你需要使用脚本 zkcli.sh,在ZooKeeper中引导Solr节点树例如:
server/scripts/cloud-scripts/zkcli.sh -zkhost ZK_HOST -cmd bootstrap -solrhome /var/solr/data

Solr Hostname
设置Solr主机名称
使用SOLR_HOST 变量在Solr Server 中指定Solr的 主机名称
SOLR_HOST=solr1.example.com
设置Solr server主机名称是推荐设置,特别是以SolrCloud模式运行。当它在ZooKeeper中注册时,它便决定了节点的地址

Override settings in solrconfig.xml
Solr允许配置属性在启动时使用java的系统属性 -Dproperty=value 方式传入例如:在solrconfig.xml中默认的软提交设置为:
<autoSoftCommit>
     <maxTime>${solr.autoSoftCommit.maxTime:-1}</maxTime>
</autoSoftCommit>
使用java system property 在启动时的配置方式为 -Dsolr.autoSoftCommit.maxTime=10000例如
bin/solr start -Dsolr.autoSoftCommit.maxTime=100000


bin/solr脚本简单的通过 以-D开头先JVM启动期间向其传入选项。在生产环境是推荐使用在头文件中 使用  变量SOLR_OPTS 代替
在/var/solr/sorl.in.sh 中
SOLR_OPTS="$SOLR_OPTS -Dsolr.autoSoftCommit.maxTime=10000"



Enable Remote JMX Access
启用远程JMX访问

启用远程JMX java 性能解析工具例如JConsole 或VisualVM 检测远程Solr服务
需要将ENABLE_REMOTE_JMX_OPTS属性设置为true,还需要为JMX设置端口用于JMX RMI连接绑定像18983
ENABLE_REMOTE_JMX_OPTS=true
RMI_PORT=18983

JMX RMI将会允许java性能剖析工具尝试连接18983.当可用时,在Solr启动时以下属性将会传到JVM
-Dcom.sun.management.jmxremote \
-Dcom.sun.management.jmxremote.local.only=false \
-Dcom.sun.management.jmxremote.ssl=false \
-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.port=18983 \
-Dcom.sun.management.jmxremote.rmi.port=18983
该设置主要用于性能调试

每个主机运行多个Solr节点
每个节点需要有不懂的Solr家目录,理想状态下每个家目录需要在不懂的物理硬盘上,这样Solr节点才不会相互竞争磁盘空间。每个节点都有独立的solr文件。如果需要将solr加入系统服务,则需要分别使用脚本指定。如:
sudo bash ./install_solr_service.sh solr-5.0.0.tgz -s solr2 -p 8984


ZooKeeper 安装
ZooKeeper下载

文章链接
https://cwiki.apache.org/confluence/display/solr/Setting+Up+an+External+ZooKeeper+Ensemble

Setting Up a Single ZooKeeper



Create the instance



Configure the instance

<ZOOKEEPER_HOME>/conf/zoo.cfg

tickTime=2000
dataDir=/var/lib/zookeeper
端口clientPort=2181

Run the instance

ZOOKEEPER_HOME/bin/zkServer.sh

zkServer.sh start
其他配置:http://zookeeper.apache.org/doc/r3.4.5/zookeeperStarted.html

Point Solr at the instance


使用-z参数将solr参数添加到ZooKeeper中
bin/solr start -e cloud -z localhost:2181 -noprompt


Add a node pointing to an existing ZooKeeper at port 2181:
添加节点到ZooKeeper中
bin/solr start -cloud -s <新solr节点的home目录> -p8987 -z localhost:2181

如果启动的不是使用solr example ,那需要自己去配置创建集群

Shut down ZooKeeper

zkServer.sh stop.


Setting up a ZooKeeper Ensemble

创建ZooKeeper集群

zoo.cfg
dataDir=/var/lib/zookeeperdata/1
clientPort=2181
initLimit=5
syncLimit=2
server.1=localhost:2888:3888
server.2=localhost:2889:3889
server.3=localhost:2890:3890
这一行配置中,第一个端口(   port   )是从(   follower   )机器连接到主(   leader   )机器的端口,第二个端口是用来进行   leader   选举的端口。在这个例子中,每台机器使用三个端口,分别是:   clientPort   2181     port     2888     port     3888  
initLimit ,允许节点链接主服务器所需的时间和次数,如果等于5的话表示有5次链接尝试,每次2000毫秒,所以服务器需要等待10秒时间来连接和与主服务器同步
Amount of time, in ticks, to allow followers to connect and sync to a leader. In this case, you have 5 ticks, each of which is 2000 milliseconds long, so the server will wait as long as 10 seconds to connect and sync with the leader.
syncLimit :节点与主服务器同步所允许的时长,如果节点服务器远远落后于主服务器那么,该节点有可能会被抛弃
Amount of time, in ticks, to allow followers to sync with ZooKeeper. If followers fall too far behind a leader, they will be dropped.
server.X  设置服务集群的ID和地址,服务器id必须单独的存储在<dataDir>/myid文件中,需要手动创建1 /var/lib/zookeeperdata/ myid
鉴于需要运行多个solr实例,你需要为每个实例创建独立的目录,同样也需要创建一个新的ZooKeeper实例。即使在同一台机器上。
所以需要为每一个实例创建配置文件
  <ZOOKEEPER_HOME>/conf/zoo2.cfg
tickTime=2000
dataDir=c:/sw/zookeeperdata/2
clientPort=2182
initLimit=5
syncLimit=2
server.1=localhost:2888:3888
server.2=localhost:2889:3889
server.3=localhost:2890:3890
<ZOOKEEPER_HOME>/conf/zoo3.cfg :
tickTime=2000
dataDir=c:/sw/zookeeperdata/3
clientPort=2183
initLimit=5
syncLimit=2
server.1=localhost:2888:3888
server.2=localhost:2889:3889
server.3=localhost:2890:3890

tickTime :基本事件单元,以毫秒为单位。它用来指示心跳,最小的 session 过期时间为两倍的 tickTime. 。

dataDir :存储内存中数据库快照的位置,如果不设置参数,更新事务日志将被存储到默认位置。

clientPort :监听客户端连接的端口


最后在每一个dataDir中创建myid文件,用于区分实例。通过 server.x的设置来匹配每个机器的ZooKeeper实例,因此ZooKeeper实例会被命名成server.1,在上述例子中myid的中的值为1 myid的值可以是 1到255

指定特定的配置文件启动ZooKeeper

d <ZOOKEEPER_HOME>
bin/zkServer.sh start zoo.cfg
bin/zkServer.sh start zoo2.cfg
bin/zkServer.sh start zoo3.cfg

一旦这些服务都起来了之后就可以将Solr实例关联ZooKeeper

bin/solr start -e cloud -z localhost:2181,localhost:2182,localhost:2183 -noprompt
115.182.66.179: 2181,118.244.192.244: 2181,118.244.192.245: 2181
solr start -e cloud -z 115.182.66.179:2181,118.244.192.244:2181,118.244.192.245:2181 -noprompt

1)单机模式

 

首先,从Apache官方网站下载一个ZooKeeper 的最近稳定版本。


http://hadoop.apache.org/zookeeper/releases.html

 

作为国内用户来说,选择最近的的源文件服务器所在地,能够节省不少的时间。


http://labs.renren.com/apache-mirror//hadoop/zookeeper/

 

ZooKeeper 要求 JAVA 的环境才能运行,并且需要 JAVA6 以上的版本,可以从 SUN 官网上下载,并对JAVA 环境变量进行设置。除此之外,为了今后操作的方便,我们需要对 ZooKeeper 的环境变量进行配置,方法如下,在 /etc/profile 文件中加入如下的内容:

 

 

 

#Set ZooKeeper Enviroment

export ZOOKEEPER_HOME=/root/hadoop-0.20.2/zookeeper-3.3.1

export PATH=$PATH:$ZOOKEEPER_HOME/bin:$ZOOKEEPER_HOME/conf

 

 

ZooKeeper 服务器包含在单个 JAR 文件中,安装此服务需要用户创建一个配置文档,并对其进行设置。我们在 ZooKeeper-*.*.* 目录(我们以当前 ZooKeeper 的最新版 3.3.1 为例,故此下面的“ ZooKeeper-*.*.* ”都将写为“ ZooKeeper-3.3.1” )的 conf 文件夹下创建一个 zoo.cfg 文件,它包含如下的内容:


tickTime=2000

dataDir=/var/zookeeper

clientPort=2181

 

在这个文件中,我们需要指定 dataDir 的值,它指向了一个目录,这个目录在开始的时候需要为空。下面是每个参数的含义:

 

tickTime :基本事件单元,以毫秒为单位。它用来指示心跳,最小的 session 过期时间为两倍的 tickTime. 。

dataDir :存储内存中数据库快照的位置,如果不设置参数,更新事务日志将被存储到默认位置。

clientPort :监听客户端连接的端口

 

使用单机模式时用户需要注意:这种配置方式下没有 ZooKeeper 副本,所以如果 ZooKeeper 服务器出现故障, ZooKeeper 服务将会停止。


以下代码清单 A 是我们的根据自身情况所设置的 zookeeper 配置文档: zoo.cfg

代码清单 A : zoo.cfg

# The number of milliseconds of each tick

tickTime=2000

 

# the directory where the snapshot is stored.

dataDir=/root/hadoop-0.20.2/zookeeper-3.3.1/snapshot/data

 

# the port at which the clients will connect

clientPort=2181

 




2)集群模式

 

 

为了获得可靠的 ZooKeeper 服务,用户应该在一个集群上部署 ZooKeeper 。只要集群上大多数的ZooKeeper 服务启动了,那么总的 ZooKeeper 服务将是可用的。另外,最好使用奇数台机器。 如果 zookeeper拥有 5 台机器,那么它就能处理 2 台机器的故障了。


之后的操作和单机模式的安装类似,我们同样需要对 JAVA 环境进行设置,下载最新的 ZooKeeper 稳定版本并配置相应的环境变量。不同之处在于每台机器上 conf/zoo.cfg 配置文件的参数设置,参考下面的配置:


tickTime=2000

dataDir=/var/zookeeper/

clientPort=2181

initLimit=5

syncLimit=2

server.1=zoo1:2888:3888

server.2=zoo2:2888:3888

server.3=zoo3:2888:3888


  server.id=host:port:port.   ”指示了不同的   ZooKeeper   服务器的自身标识,作为集群的一部分的机器应该知道   ensemble   中的其它机器。用户可以从“   server.id=host:port:port.   ”中读取相关的信息。   在服务器的   data   dataDir   参数所指定的目录)目录下创建一个文件名为   myid   的文件,这个文件中仅含有一行的内容,指定的是自身的   id   值。比如,服务器“   1   ”应该在   myid   文件中写入“   1   ”。这个   id   值必须是   ensemble   中唯一的,且大小在   1     255   之间。这一行配置中,第一个端口(   port   )是从(   follower   )机器连接到主(   leader   )机器的端口,第二个端口是用来进行   leader   选举的端口。在这个例子中,每台机器使用三个端口,分别是:   clientPort   2181     port     2888     port     3888  

我们在拥有三台机器的 Hadoop 集群上测试使用 ZooKeeper 服务,下面代码清单 B 是我们根据自身情况所设置的 ZooKeeper 配置文档:

代码清单 B : zoo.cfg

# The number of milliseconds of each tick

tickTime=2000

 

# The number of ticks that the initial

# synchronization phase can take

initLimit=10

 

# The number of ticks that can pass between

# sending a request and getting an acknowledgement

syncLimit=5

 

# the directory where the snapshot is stored.

dataDir=/root/hadoop-0.20.2/zookeeper-3.3.1/snapshot/d1

 

# the port at which the clients will connect

clientPort=2181

 

server.1=IP1:2887:3887

server.2=IP2:2888:3888

server.3=IP3:2889:3889

 

清单中的 IP 分别对应的配置分布式 ZooKeeper 的 IP 地址。当然,也可以通过机器名访问 zookeeper ,但是需要在ubuntu 的 hosts 环境中进行设置。读者可以查阅 Ubuntu 以及 Linux 的相关资料进行设置。



 

3)集群伪分布

 

 

简单来说,集群伪分布模式就是在单机下模拟集群的ZooKeeper服务。

 

 

那么,如何对配置 ZooKeeper 的集群伪分布模式呢?其实很简单,在 zookeeper 配置文档中, clientPort参数用来设置客户端连接 zookeeper 的端口。 server.1=IP1:2887:3887 中, IP1 指示的是组成 ZooKeeper 服务的机器 IP 地址, 2887 为用来进行 leader 选举的端口, 3887 为组成 ZooKeeper 服务的机器之间通信的端口。集群伪分布模式我们使用每个配置文档模拟一台机器,也就是说,需要在单台机器上运行多个 zookeeper 实例。但是,我们必须要保证各个配置文档的 clientPort 不能冲突。


下面是我们所配置的集群伪分布模式,通过 zoo1.cfg , zoo2.cfg , zoo3.cfg 模拟了三台机器的 ZooKeeper集群。详见代码清单 C :

 

代码清单C : zoo1.cfg :

# The number of milliseconds of each tick

tickTime=2000

 

# The number of ticks that the initial

# synchronization phase can take

initLimit=10

 

# The number of ticks that can pass between

# sending a request and getting an acknowledgement

syncLimit=5

 

# the directory where the snapshot is stored.

dataDir=/root/hadoop-0.20.2/zookeeper-3.3.1/d_1

 

# the port at which the clients will connect

clientPort=2181

 

server.1=localhost:2887:3887

server.2=localhost:2888:3888

server.3=localhost:2889:3889

zoo2.cfg :

# The number of milliseconds of each tick

tickTime=2000

 

# The number of ticks that the initial

# synchronization phase can take

initLimit=10

 

# The number of ticks that can pass between

# sending a request and getting an acknowledgement

syncLimit=5

 

# the directory where the snapshot is stored.

dataDir=/root/hadoop-0.20.2/zookeeper-3.3.1/d_2

 

# the port at which the clients will connect

clientPort=2182

 

#the location of the log file

dataLogDir=/root/hadoop-0.20.2/zookeeper-3.3.1/logs

 

server.1=localhost:2887:3887 

server.2=localhost:2888:3888

server.3=localhost:2889:3889

 

zoo3.cfg :

# The number of milliseconds of each tick

tickTime=2000

 

# The number of ticks that the initial

# synchronization phase can take

initLimit=10

 

# The number of ticks that can pass between

# sending a request and getting an acknowledgement

syncLimit=5

 

# the directory where the snapshot is stored.

dataDir=/root/hadoop-0.20.2/zookeeper-3.3.1/d_2

 

# the port at which the clients will connect

clientPort=2183

 

#the location of the log file

dataLogDir=/root/hadoop-0.20.2/zookeeper-3.3.1/logs

 

server.1=localhost:2887:3887 

server.2=localhost:2888:3888

server.3=localhost:2889:3889

 

从上述三个代码清单中可以看到,除了 clientPort 不同之外, dataDir 也不同。另外,不要忘记在 dataDir 所对应的目录中创建 myid 文件来指定对应的 zookeeper 服务器实例。



























评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值