最短路
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 32001 Accepted Submission(s): 13871
Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?
Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
输入保证至少存在1条商店到赛场的路线。
Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
Sample Input
2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0
Sample Output
3 2迪杰斯特拉算法#include<stdio.h> #include<string.h> #define M 0x7fffff int a[102][102]; int n,m; void DIJ() { int i,j,k,min; int dis[102],used[102]={0}; for(i=1;i<=n;i++) dis[i]=a[1][i]; for(i=2;i<=n;i++) { min=M; for(j=2;j<=n;j++) if(!used[j]&&min>dis[j]) { k=j; min=dis[j]; } used[k]=1; for(j=1;j<=n;j++) if(!used[j]&&dis[j]>a[k][j]+dis[k]) dis[j]=a[k][j]+dis[k]; } printf("%d\n",dis[n]); } int main() { int i,j,x,y,z; while(scanf("%d%d",&n,&m)&&n+m) { int k; for(i=1;i<=n;i++) for(j=1;j<=n;j++) if(i==j) a[i][j]=0; else a[i][j]=M; for(i=0;i<m;i++) { k=0; scanf("%d%d%d",&x,&y,&z); // for(j=0;j<i;j++) if(a[x][y]<z) { k=1; // break; } if(!k) a[x][y]=a[y][x]=z; } DIJ(); } return 0; }
弗洛伊德算法#include<stdio.h> #include<string.h> #define M 0x7fffff int a[102][102]; int n,m; int flody() { int i,j,k; for(i=1;i<=n;i++) for(j=1;j<=n;j++) for(k=1;k<=n;k++) if(a[j][k]>a[j][i]+a[i][k]) a[j][k]=a[j][i]+a[i][k]; return a[1][n]; } int main() { int i,j,x,y,z; while(scanf("%d%d",&n,&m)&&n+m) { int k; for(i=1;i<=n;i++) for(j=1;j<=n;j++) if(i==j) a[i][j]=0; else a[i][j]=M; for(i=0;i<m;i++) { k=0; scanf("%d%d%d",&x,&y,&z); // for(j=0;j<i;j++) if(a[x][y]<z) { k=1; // break; } if(!k) a[x][y]=a[y][x]=z; } printf("%d\n",flody()); } return 0; }