低通滤波深入解读

本回答没有涉及传递函数,也不涉及连续和离散拉普拉斯变换,简易推导低通滤波器的数字形式,可能推导过程不严谨,请各位点评。

RC低通滤波器电路,R和C的器件参数可忽略​​​

如上图,简单的RC滤波器。

一、推导之前有两个假设:

1、R、C是理想器件;

2、负载阻抗无穷大,即iR(t) = iC(t);

二、前提知识:

电容-电流-电压关系:i_{(t)} = C\cdot\frac{du}{dt}

容抗计算:X_{c} = \frac{1}{j\varpi C}

圆频率与频率关系:\varpi = 2\pi f

三、低通滤波器公式形式推导

(1)······i_{C}{(t)} = C\cdot\frac{dv_{o}}{dt}

(2)······ v_{i}{(t)}-v_{o}{(t)}=i_{C}{(t)}\cdot R

(1)式代入(2)式,可得:v_{i}{(t)}-v_{o}{(t)}=C\cdot\frac{dv_{o}}{dt}\cdot R

然后可以变形成:v_{o}{(t)}=v_{i}{(t)}-RC\cdot\frac{dv_{o}}{dt}

(5)······v_{o}{(k)}=\frac{1}{1+\frac{RC}{T}}\cdot v_{i}{(k)}+\frac{\frac{RC}{T}}{1+\frac{RC}{T}}\cdot v_{o}{(k-1)}

现在,这就成了低通滤波器的通用形式:Y_{k}=\alpha \cdot X_{k} + (1-\alpha) \cdot Y_{k-1}

其中\alpha = \frac{1}{1+\frac{RC}{T}}

四、截至频率计算

还是开局那张图,Vo和Vi按阻抗分压比有这样的关系:(6)······v_{o}=\frac{\frac{1}{j\varpi C}}{R+\frac{1}{j\varpi C}} \cdot v_{i}

截至频率的定义:随着频率的增加,功耗降低一半的频率,也就是输出电压式输入电压的1/\sqrt{2}倍的时候。

 所以有:v_{o}=\left| \frac{\frac{1}{j\varpi C}}{R+\frac{1}{j\varpi C}} \right| \cdot v_{i} \Rightarrow v_{o} = \frac{1}{\sqrt{1+(\varpi RC)^{2}}} \cdot v_{i} \Rightarrow v_{o} = \frac{1}{\sqrt{2}}\cdot v_{t}

α与f关系:\alpha = \frac{2\pi f_{c}T}{1+2\pi f_{c}T}

至此,低通滤波器的公式推导完毕。

五、相位滞后角度计算

在一些应用中,还要考虑低通滤波后的相位滞后问题,能够在滤波后对相位补偿,这也是低通滤波器的一部分。

按(6)式来计算,变形成a+bi这样的形式

v_{o}= \left[ \frac{1}{1+(\varpi RC)^{2}}- j\frac{\varpi RC}{1+(\varpi RC)^{2}} \right] \cdot v_{i}

\theta = arctan(\frac{-\frac{\varpi RC}{1+(\varpi RC)^2}}{\frac{1}{1+(\varpi RC)^2}}) =-arctan(\varpi RC)=-arctan(2\pi f/2\pi f_{c})=-arctan(\frac{f}{f_{c}})

六、符号定义

R:电阻阻值

C:电容容值

v_{i}{(t)} : 时域的输入电压

v_{o}{(t)} : 时域的输出电压

v_{i}{(k)}: 离散形式的第k次采样输入电压

v_{o}{(k)}: 离散形式的第k次采用输出电压

ϖ : 圆频率

f_{c}: 截止频率

f: 当前信号频率

θ : 滞后角度

T: 采样时间间隔

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶夏沉思

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值