本回答没有涉及传递函数,也不涉及连续和离散拉普拉斯变换,简易推导低通滤波器的数字形式,可能推导过程不严谨,请各位点评。

如上图,简单的RC滤波器。
一、推导之前有两个假设:
1、R、C是理想器件;
2、负载阻抗无穷大,即iR(t) = iC(t);
二、前提知识:
电容-电流-电压关系:
容抗计算:
圆频率与频率关系:
三、低通滤波器公式形式推导
(1)······
(2)······
(1)式代入(2)式,可得:
然后可以变形成:
(5)······
现在,这就成了低通滤波器的通用形式:
其中
四、截至频率计算
还是开局那张图,Vo和Vi按阻抗分压比有这样的关系:(6)······
截至频率的定义:随着频率的增加,功耗降低一半的频率,也就是输出电压式输入电压的倍的时候。
所以有:
α与f关系:
至此,低通滤波器的公式推导完毕。
五、相位滞后角度计算
在一些应用中,还要考虑低通滤波后的相位滞后问题,能够在滤波后对相位补偿,这也是低通滤波器的一部分。
按(6)式来计算,变形成a+bi这样的形式
六、符号定义
R:电阻阻值
C:电容容值
: 时域的输入电压
: 时域的输出电压
: 离散形式的第k次采样输入电压
: 离散形式的第k次采用输出电压
ϖ : 圆频率
: 截止频率
: 当前信号频率
θ : 滞后角度
T: 采样时间间隔