计量
nbszg
这个作者很懒,什么都没留下…
展开
-
数据分析系列:绩效(效率)评价与python实现(层析分析、topsis、DEA)
当分析一个项目是否可行,或多个决策中挑选出最优的一个进行执行,对以往的项目或人员进行绩效评价时,我们需要对一项业务或人员的绩效(效率)进行打分。这就是绩效(效率)评价的目标。假设有下面一个案例,我们对一个进行产品进行用户增长的广告投放,假设我们有多个广告承接商可以选择。具体的我们应该选择哪一个广告承接商?这就可以用一些绩效评价的方法解决,可用户绩效(效率)评价的方法非常多,这里只介绍层析分析法,...原创 2020-04-26 20:01:46 · 8939 阅读 · 2 评论 -
用Python底层编写进行计量经济分析(四):自相关(原因、结果、检验:DW检验、补救:广义线性回归)
系列前面的文章:1.用Python底层编写进行计量经济分析(一):多元线性回归(参数估计、T检验、拟合优度、F检验)2.用Python底层编写进行计量经济分析(二):多重共线性(原因、结果、检验:条件数/方差膨胀因子、补救:岭回归)3用Python底层编写进行计量经济分析(三):异方差(原因、结果、检验:White检验、补救:广义线性回归)多元线性回归的基本假定:模型符合线性模式XX...原创 2020-04-17 17:25:08 · 6438 阅读 · 1 评论 -
计量经济分析:计量经济学中的三大检验(LR, Wald, LM)
前面用Python底层编写进行计量经济分析(一):多元线性回归(参数估计、T检验、拟合优度、F检验)写过在多元线性回归时的参数检验方法t检验和方程整体的F检验。在分析中和实际情况中,我们可能会假定因素之间可能存在一定的约束条件。我们在意的不仅是x对y的影响,也关心我们的约束条件是否成立。于是产生了检验线性约束条件是否成立的F检验、似然比检验(LR)、沃尔德检验(Wald)和拉格朗日乘子检验(LM)...原创 2020-04-16 20:40:45 · 138007 阅读 · 9 评论 -
数据分析系列:生存分析(生存曲线分析、Cox回归分析)——附生存分析python代码。
上一篇文章写了数据分析系列:归因分析原理、案例和python代码。但是现实中用户所归属的渠道可能很多,比如用户在网上商城的首页点击了一个产品,又在其他公众号的相关推荐点击了此产品,最终进行了下单,那这个产品的订单应该归属于哪个渠道?这就是归因分析中的多渠道归因。对于多渠道归因,有一些启发式的归因方法,比如“最终点击”(将订单归属于最后一个渠道)、“非最终点击”(归属于倒数第二个渠道)、“首次点击...原创 2020-04-15 11:48:56 · 25068 阅读 · 26 评论 -
用Python底层编写进行计量经济分析(三):异方差(原因、结果、检验:White检验、补救:广义线性回归)
系列前面的文章:1.用Python底层编写进行计量经济分析(一):多元线性回归(参数估计、T检验、拟合优度、F检验)2.用Python底层编写进行计量经济分析(二):多重共线性(原因、结果、检验:条件数/方差膨胀因子、补救:岭回归)模型符合线性模式XXX满秩(无多重共线)零均值价值:E(εi∣Xi)=0E(ε_i|X_i)=0E(εi∣Xi)=0(自变量外生)同方差:Var(εi...原创 2020-04-08 20:03:24 · 12441 阅读 · 6 评论 -
用Python底层编写进行计量经济分析(二):多重共线性(原因、结果、检验:条件数/方差膨胀因子、补救:岭回归)
上一次对多元线性回归的估计以及参数和方程的显著性进行了python实现。但是这些都是建立多元线性回归的几个假设基础之上的:模型符合线性模式XXX满秩(无多重共线)零均值价值:E(εi∣Xi)=0E(ε_i|X_i)=0E(εi∣Xi)=0(自变量外生)同方差:Var(εi∣Xi)=σVar(ε_i|X_i)=σVar(εi∣Xi)=σ无自相关:cov(εi,εj)=0cov(ε...原创 2020-04-05 12:23:06 · 5373 阅读 · 0 评论 -
用Python底层编写进行计量经济分析(一):多元线性回归(参数估计、T检验、拟合优度、F检验)
之前上学时计量经济学的模型实现总是用Eviews等软件实现。但是对于点击鼠标得到结果的方式,总是让自己感觉没有参与模型建立的过程。所以准备利用python写代码进行计量经济分析,对自己也做一个技术沉淀。暂时准备写以下几篇,后面再慢慢补充;多元线性回归和显著性检验(参数估计、T检验、F检验、拟合优度)多重共线性(导致结果、检验——方差膨胀因子、补救措施——岭回归)异方差(导致结果、检验——W...原创 2020-04-03 11:29:45 · 11439 阅读 · 2 评论