python
nbszg
这个作者很懒,什么都没留下…
展开
-
用Python底层编写进行计量经济分析(四):自相关(原因、结果、检验:DW检验、补救:广义线性回归)
系列前面的文章:1.用Python底层编写进行计量经济分析(一):多元线性回归(参数估计、T检验、拟合优度、F检验)2.用Python底层编写进行计量经济分析(二):多重共线性(原因、结果、检验:条件数/方差膨胀因子、补救:岭回归)3用Python底层编写进行计量经济分析(三):异方差(原因、结果、检验:White检验、补救:广义线性回归)多元线性回归的基本假定:模型符合线性模式XX...原创 2020-04-17 17:25:08 · 6438 阅读 · 1 评论 -
用Python底层编写进行计量经济分析(二):多重共线性(原因、结果、检验:条件数/方差膨胀因子、补救:岭回归)
上一次对多元线性回归的估计以及参数和方程的显著性进行了python实现。但是这些都是建立多元线性回归的几个假设基础之上的:模型符合线性模式XXX满秩(无多重共线)零均值价值:E(εi∣Xi)=0E(ε_i|X_i)=0E(εi∣Xi)=0(自变量外生)同方差:Var(εi∣Xi)=σVar(ε_i|X_i)=σVar(εi∣Xi)=σ无自相关:cov(εi,εj)=0cov(ε...原创 2020-04-05 12:23:06 · 5373 阅读 · 0 评论 -
用Python底层编写进行计量经济分析(一):多元线性回归(参数估计、T检验、拟合优度、F检验)
之前上学时计量经济学的模型实现总是用Eviews等软件实现。但是对于点击鼠标得到结果的方式,总是让自己感觉没有参与模型建立的过程。所以准备利用python写代码进行计量经济分析,对自己也做一个技术沉淀。暂时准备写以下几篇,后面再慢慢补充;多元线性回归和显著性检验(参数估计、T检验、F检验、拟合优度)多重共线性(导致结果、检验——方差膨胀因子、补救措施——岭回归)异方差(导致结果、检验——W...原创 2020-04-03 11:29:45 · 11439 阅读 · 2 评论 -
A/Btest:组间的差异性检验,统计功效以及反选样本量,附python底层实现代码
先概括一下:本文主要阐述了A/Btest中组间差异的比率检验(单比率检验,双比率检验),统计功效和,以及何通过显著性水平还有统计功效反实验所需选样本量。根绝这些理论使用python对着三个功能封装成类,进行实现一、A/B test在产品发布,运营等场景我们都会遇到A/B test。A/B test通常为同一个目标,设计两种方案,将两种方案随机投放市场中。A/B test让组成成分相同(相似)...原创 2020-03-31 17:03:58 · 7146 阅读 · 6 评论 -
强化学习笔记+代码(二):SARSA算法原理和Agent实现
本文主要整理和参考了李宏毅的强化学习系列课程和莫烦python的强化学习教程本系列主要分几个部分进行介绍强化学习背景介绍SARSA算法原理和Agent实现Q-learning算法原理和Agent实现DQN算法原理和Agent实现Double-DQN算法原理和Agent实现Policy Gradients算法原理和Agent实现A2C、A3C算法原理和Agent实现一、SARS...原创 2020-03-23 12:03:33 · 7596 阅读 · 6 评论 -
强化学习笔记+代码(一):强化学习背景介绍
本文主要整理和参考了李宏毅的强化学习系列课程和莫烦python的强化学习教程本系列主要分几个部分进行介绍强化学习背景介绍SARSA算法原理和Agent实现Q-learning算法原理和Agent实现DQN算法原理和Agent实现Double-DQN算法原理和Agent实现Policy Gradients算法原理和Agent实现A2C、A3C算法原理和Agent实现一、什么是强...原创 2020-03-23 11:12:59 · 6609 阅读 · 0 评论 -
特征选择 Python代码
一、特征选择对与机器学习建模。在海量特征时,特征工程选择是必要的。特征工程很大程度上决定了模型的效果和模型的稳定性。特征工程中包函内容很多,包括数据分析,特征组合变换,特征选择和特征降维等等的技术。特征工程和数据的清洗占据了建模过程中绝大部分的时间。其中特征选择是必不可少的阶段。当建模样本数量不足,但特征较多的时候。特征选择是必须的。因为参数的数量规模往往是与特征的多少是正相关的。如果没有足够...原创 2019-12-12 20:38:57 · 4111 阅读 · 2 评论 -
卷积神经网络CNN相关模型python案例(LeNet-5、Inception_v3)
一、卷积神经网络CNN卷积神经网络是通过卷积层(convolutions)和池化层(pooling)将特征从多个的通道(channel)生成Feature Map,再通过全连接网络(full connections)得到最终输出的一种神经网络结构。卷积神经网络的结构通常如下:输入−>(卷积层convolution×N+采样层pooling)×M−>全连接层FC×K\mathrm{...原创 2019-12-16 17:56:59 · 3474 阅读 · 1 评论