http://poj.org/problem?id=3321
每个分叉点及末梢可能有苹果(最多1个),每次可以摘掉一个苹果,或有一个苹果新长出来,随时查询某个分叉点往上的子树里,一共有多少个苹果。(分叉点数:100,000 )此题可用树状数组来做。根据题意,一开始时,所有能长苹果的地方都有苹果
//树状数组做
/*
一棵树上长了苹果,每一个树枝节点上有长苹果和不长苹果两种状态,两种操作,一种操作能够改变树枝上苹果的状态,
另一种操作询问某一树枝节点以下的所有的苹果有多少。具体做法是做一次dfs,记下每个节点的开始时间Start[i]和结束时间End[i],
那么对于i节点的所有子孙的开始时间和结束时间都应位于Start[i]和End[i]之间
然后用树状数组C统计Start[i]到End[i]之间的附加苹果总数。这里用树状数组统计区间可以用Sum(End[i])-Sum(Start[i]-1)来计算。
*/
每个节点的最后的时间end[i]可以唯一的表示这个节点,所以我使用end[i],来更新树状数组的
#include<stdio.h>
#include<string.h>
#define MAX 100009
int G[MAX][100];
int num[MAX];
int c[2*MAX],start[MAX],end[MAX],ncnt=0;
bool flag[2*MAX];
void bfs(int pos){
start[pos]=++ncnt;
int len=num[pos];
for(int i=0;i<len;i++){
bfs(G[pos][i]);
}
end[pos]=++ncnt;
}
int lowbit(int pos){
return pos&(-pos);
}
void add(int pos,int val){
while(pos<2*MAX){
c[pos]+=val;
pos+=lowbit(pos);
}
}
int sum(int pos){
int ret=0;
while(pos>0){
ret+=c[pos];
pos-=lowbit(pos);
}
return ret;
}
int main(){
int N,M;
while(~scanf("%d",&N)){
int a,b;
memset(c,0,sizeof(c));
memset(G,0,sizeof(G));
memset(num,0,sizeof(num));
memset(flag,false,sizeof(flag));
for(int i=0;i<N-1;i++){
scanf("%d %d",&a,&b);
G[a][num[a]++]=b;
}
ncnt=0;
bfs(1);
for(int i=1;i<=N;i++){
add(end[i],1);
flag[end[i]]=true;
}
scanf("%d",&M);
char str[10];
int tmp;
while(M--){
scanf("%s",str);
if(str[0]=='C'){
scanf("%d",&tmp);
if(flag[end[tmp]]==true){
add(end[tmp],-1);
flag[end[tmp]]=false;
}
else {
add(end[tmp],1);
flag[end[tmp]]=true;
}
}else if(str[0]=='Q'){
scanf("%d",&tmp);
int ans=sum(end[tmp])-sum(start[tmp]-1);
printf("%d\n",ans);
}
}
}
return 0;
}
在POJ上,开始用vector做的时候,超时了。
原因,详见:http://blog.csdn.net/tyzhaoqi2004/article/details/6882660
北大集训的题解是这样的
#include <iostream>
#include <vector>
using namespace std;
#define MY_MAX 220000
int C[MY_MAX];
typedef vector<int> VCT_INT;
vector <VCT_INT> G(MY_MAX/2); //邻接表
int Lowbit[MY_MAX];
bool HasApple[MY_MAX/2];
int Start[MY_MAX]; //dfs时的开始时间
int End[MY_MAX]; //dfs时的结束时间
int nCount= 0;
void Dfs(int v)
{
Start[v] = ++ nCount;
for( int i= 0; i < G[v].size(); i++ )
Dfs(G[v][i]);
End[v] = ++ nCount;
}
int QuerySum(int p)
{
int nSum = 0;
while( p > 0 )
{
nSum += C[p];
p -= Lowbit[p];
}
return nSum;
}
void Modify( int p,int val)
{
while( p <= nCount )
{
C[p] += val;
p += Lowbit[p];
}
}
int main()
{
int n;
scanf("%d",&n);
int x,y;
int i,j,k;
//建图
for( i= 0; i < n -1 ; i++ )
{
int a,b;
scanf("%d%d",&a,&b);
G[a].push_back(b); //a有边连到b
}
nCount= 0;
Dfs(1);
for( i= 1; i <= nCount; i++)
{
Lowbit[i] = i& ( i^( i-1));
}
for( i= 1; i <= n; i++ )
HasApple[i] = 1;
int m;
//求C数组,即树状数组的节点的值
for( i= 1; i <= nCount; i++ )
C[i] = i-(i-Lowbit[i]);
// C[i] = Sum[i] -Sum[i-lowbit(i)]
scanf("%d",&m);
for( i= 0; i < m; i++ )
{
char cmd[10];
int a;
scanf("%s%d",cmd,&a);
if( cmd[0] == 'C' )
{
if( HasApple[a] )
{
Modify( Start[a],-1);
Modify( End[a],-1);
HasApple[a] = 0;
}
else
{
Modify( Start[a],1);
Modify( End[a],1);
HasApple[a] = 1;
}
}
else
{
int t1 = QuerySum(End[a]);
int t2 = QuerySum(Start[a]-1);
printf("%d\n",(t1-t2)/2 );
}
}
}