01 分数规划 poj 2976

【定义】

01分数规划问题:所谓的01分数规划问题就是指这样的一类问题,给定两个数组,a[i]表示选取i的收益,b[i]表示选取i的代价。如果选取i,定义x[i]=1否则x[i]=0。每一个物品只有选或者不选两种方案,求一个选择方案使得R=sigma(a[i]*x[i])/sigma(b[i]*x[i])取得最值,即所有选择物品的总收益/总代价的值最大或是最小。

(这一段是我网络上考的。- =)

解决方案 

R=sigma(a[i]*x[i])/sigma(b[i]*x[i])

sigma(a[i]*x[i])/sigma(b[i]*x[i])>=R

sigma(a[i]*x[i])*R-sigma(b[i]*x[i])>=0

求出R 即使答案。

首先解决这种问题的方法,一般有两种 二分 以及 迭代 。

而如何检验 是否可以是答案,只要 求出 c[i]=(a[i]*x[i])*R-(b[i]*x[i])  进行排序 尽量取大的 即可。


(当我见到这种题型的时候 第一反应是 贪心算法 - - 根据比值排 结果...... 貌似是我太逗了~~~~!!  后来举了一个反例 我知道了  INF/INF  10/1 1/2  虽然第一个的比值比三个好 但是 - -)


poj 2976

#include <iostream>
#include <stdio.h>
#include <math.h>
#include <algorithm>
#include <string.h>
using namespace std;
#define maxn 1010

double a[maxn],b[maxn],c[maxn];
int n,m;

bool judge(double x)
{
    double sum=0;
    for(int i=0;i<n;i++)
        c[i]=a[i]-b[i]*x;
    sort(c,c+n);
    for(int i=0;i<m;i++)
        sum+=c[n-i-1];
    return sum>0;
}

int main()
{
    while(scanf("%d%d",&n,&m)&&n+m)
    {
        m=n-m;
        double l=0,r=100,mid,ret;
        for(int i=0;i<n;i++)
        {
            scanf("%lf",&a[i]);
            a[i]*=100;
        }
        for(int i=0;i<n;i++)
        {
            scanf("%lf",&b[i]);
        }

        while(fabs(r-l)>=0.001)
        {
            mid=(r+l)/2;
            if(judge(mid))
            {
                l=mid;
            }
            else
            {
                r=mid;
            }
        }
        printf("%.0lf\n",mid);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值