codeforces 650d Zip-line

5 篇文章 0 订阅
3 篇文章 0 订阅
本文详细介绍了如何通过线段树和预处理技巧求解在序列中替换一个数后得到的最长上升子序列长度问题。通过分析序列中的关键点及其对序列 LIS 的影响,实现了一种高效算法。该算法首先进行预处理,将所有询问点插入序列并求解到该点的最长上升子序列,然后通过线段树快速更新和查询,最终得出答案。
摘要由CSDN通过智能技术生成

题意:求改变原数列的一个数以后 最长上升子序列的长度,询问之间没有联系。


思路:设原序列的lis为k,那么答案只有k-1,k,k+1三种。这里有一个结论,如果一个数在lis之中,那么他在lis的位置是一定的。所以只要判断在这个位置上有多少个数就可以知道这个数是否在原序列的lis是必须的。如果是必须的,那么在没有这个数的lis就是k-1,否则就是k。那么接下来只要求出有这个数的数列的lis,就能知道答案了。

进行一次预处理,我们把询问放到数列上的各个点上,替换掉原来的点,求出到这个点为止且包含这个的lis,这个利用线段树顺推过去就好,在同理求出右边的,相加减一就是答案。

ps:这个lis结论 都没用过 看到以后 整个人都懵逼了QAQ 还有今天交的时候cf又挂掉了 处理了十多分钟 难过


#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
#include<queue>
#include<math.h>
using namespace std;
#define N 400100
#define LL long long

struct node
{
    int id;
    int pos;
    int val;

    node(int cnt)
    {
        id=cnt;
        scanf("%d%d",&pos,&val);
    }
};

vector<node> e[N];

int a[N];
int b[N];
int c[N];

struct line{
    int t[N*4];
    int query(int l,int r,int x,int y,int tt)
    {
        if(l==x&&r==y)
        {
            return t[tt];
        }

        int mid=(l+r)/2;
        if(x>mid)
            return query(mid+1,r,x,y,tt*2+1);
        else if(y<=mid)
            return query(l,mid,x,y,tt*2);
        else
            return max(query(l,mid,x,mid,tt*2),
                       query(mid+1,r,mid+1,y,tt*2+1));
    }

    void add(int l,int r,int tt,int k,int x)
    {
        if(l==r)
        {
            t[tt]=x;
            return;
        }
        int mid=(l+r)/2;
        if(k>mid)
            add(mid+1,r,tt*2+1,k,x);
        else
            add(l,mid,tt*2,k,x);
        t[tt]=max(t[tt*2],t[tt*2+1]);
    }

    void init()
    {
        memset(t,0,sizeof(t));
    }

    int searchMax(int l,int r,int tt)
    {
        if(l==r)
            return l;
        int mid=(l+r)/2;
        if(t[tt*2+1]==t[1])
            return searchMax(mid+1,r,tt*2+1);
        else
            return searchMax(l,mid,tt*2);
    }
};

line lin;

int ll[N];
int rr[N];

int num[N];
int ans[N];
int cnt;

int binaryI(int x)
{
    int l=1,r=cnt,res=0;
    while(l<=r)
    {
        int mid=(l+r)/2;
        if(x>c[mid])
        {
            res=mid;
            l=mid+1;
        }
        else
            r=mid-1;
    }
    return res;
}

int binaryA(int x)
{
    int l=1,r=cnt,res=cnt+1;
    while(l<=r)
    {
        int mid=(l+r)/2;
        if(x<c[mid])
        {
            res=mid;
            r=mid-1;
        }
        else
            l=mid+1;
    }
    return res;
}

int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
    {
       scanf("%d",&a[i]);
       b[i]=a[i];
    }
    for(int i=1;i<=m;i++)
    {
        node rr=node(i);
        e[rr.pos].push_back(rr);
    }

    sort(b+1,b+n+1);
    c[++cnt]=b[1];
    for(int i=2;i<=n;i++)
    {
        if(b[i]==b[i-1])continue;
        c[++cnt]=b[i];
    }
    for(int i=1;i<=n;i++)
    {
        int s=binaryI(a[i]);
        int temp=0;
        if(s!=0)
            temp=lin.query(1,cnt,1,s,1);
        ll[i]=temp+1;
        lin.add(1,cnt,1,s+1,temp+1);
    }
    int length=lin.t[1];
    lin.init();
    for(int i=n;i>=1;i--)
    {
        int s=binaryA(a[i]);
        int temp=0;
        if(s!=cnt+1)
            temp=lin.query(1,cnt,s,cnt,1);
        if(temp+ll[i]==length)
            num[ll[i]]++;
        for(int j=0;j<e[i].size();j++)
        {
            int ss=binaryA(e[i][j].val);
            ans[e[i][j].id]=1;
            if(ss!=cnt+1)
                ans[e[i][j].id]+=lin.query(1,cnt,ss,cnt,1);
        }
        rr[i]=temp+1;
        lin.add(1,cnt,1,s-1,temp+1);
    }
    lin.init();
    for(int i=1;i<=n;i++)
    {
        int s=binaryI(a[i]);
        int temp=0;
        if(s!=0)
            temp=lin.query(1,cnt,1,s,1);

        int fin=length;
        if(rr[i]+ll[i]-1==length)
        {
            if(num[ll[i]]==1)
                fin--;
        }

        for(int j=0;j<e[i].size();j++)
        {
            int ss=binaryI(e[i][j].val);
            if(ss!=0)
                ans[e[i][j].id]+=lin.query(1,cnt,1,ss,1);
            ans[e[i][j].id]=max(ans[e[i][j].id],fin);
        }
        lin.add(1,cnt,1,s+1,temp+1);
    }

    for(int i=1;i<=m;i++)
        printf("%d\n",ans[i]);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值