题意:求改变原数列的一个数以后 最长上升子序列的长度,询问之间没有联系。
思路:设原序列的lis为k,那么答案只有k-1,k,k+1三种。这里有一个结论,如果一个数在lis之中,那么他在lis的位置是一定的。所以只要判断在这个位置上有多少个数就可以知道这个数是否在原序列的lis是必须的。如果是必须的,那么在没有这个数的lis就是k-1,否则就是k。那么接下来只要求出有这个数的数列的lis,就能知道答案了。
进行一次预处理,我们把询问放到数列上的各个点上,替换掉原来的点,求出到这个点为止且包含这个的lis,这个利用线段树顺推过去就好,在同理求出右边的,相加减一就是答案。
ps:这个lis结论 都没用过 看到以后 整个人都懵逼了QAQ 还有今天交的时候cf又挂掉了 处理了十多分钟
#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
#include<queue>
#include<math.h>
using namespace std;
#define N 400100
#define LL long long
struct node
{
int id;
int pos;
int val;
node(int cnt)
{
id=cnt;
scanf("%d%d",&pos,&val);
}
};
vector<node> e[N];
int a[N];
int b[N];
int c[N];
struct line{
int t[N*4];
int query(int l,int r,int x,int y,int tt)
{
if(l==x&&r==y)
{
return t[tt];
}
int mid=(l+r)/2;
if(x>mid)
return query(mid+1,r,x,y,tt*2+1);
else if(y<=mid)
return query(l,mid,x,y,tt*2);
else
return max(query(l,mid,x,mid,tt*2),
query(mid+1,r,mid+1,y,tt*2+1));
}
void add(int l,int r,int tt,int k,int x)
{
if(l==r)
{
t[tt]=x;
return;
}
int mid=(l+r)/2;
if(k>mid)
add(mid+1,r,tt*2+1,k,x);
else
add(l,mid,tt*2,k,x);
t[tt]=max(t[tt*2],t[tt*2+1]);
}
void init()
{
memset(t,0,sizeof(t));
}
int searchMax(int l,int r,int tt)
{
if(l==r)
return l;
int mid=(l+r)/2;
if(t[tt*2+1]==t[1])
return searchMax(mid+1,r,tt*2+1);
else
return searchMax(l,mid,tt*2);
}
};
line lin;
int ll[N];
int rr[N];
int num[N];
int ans[N];
int cnt;
int binaryI(int x)
{
int l=1,r=cnt,res=0;
while(l<=r)
{
int mid=(l+r)/2;
if(x>c[mid])
{
res=mid;
l=mid+1;
}
else
r=mid-1;
}
return res;
}
int binaryA(int x)
{
int l=1,r=cnt,res=cnt+1;
while(l<=r)
{
int mid=(l+r)/2;
if(x<c[mid])
{
res=mid;
r=mid-1;
}
else
l=mid+1;
}
return res;
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
b[i]=a[i];
}
for(int i=1;i<=m;i++)
{
node rr=node(i);
e[rr.pos].push_back(rr);
}
sort(b+1,b+n+1);
c[++cnt]=b[1];
for(int i=2;i<=n;i++)
{
if(b[i]==b[i-1])continue;
c[++cnt]=b[i];
}
for(int i=1;i<=n;i++)
{
int s=binaryI(a[i]);
int temp=0;
if(s!=0)
temp=lin.query(1,cnt,1,s,1);
ll[i]=temp+1;
lin.add(1,cnt,1,s+1,temp+1);
}
int length=lin.t[1];
lin.init();
for(int i=n;i>=1;i--)
{
int s=binaryA(a[i]);
int temp=0;
if(s!=cnt+1)
temp=lin.query(1,cnt,s,cnt,1);
if(temp+ll[i]==length)
num[ll[i]]++;
for(int j=0;j<e[i].size();j++)
{
int ss=binaryA(e[i][j].val);
ans[e[i][j].id]=1;
if(ss!=cnt+1)
ans[e[i][j].id]+=lin.query(1,cnt,ss,cnt,1);
}
rr[i]=temp+1;
lin.add(1,cnt,1,s-1,temp+1);
}
lin.init();
for(int i=1;i<=n;i++)
{
int s=binaryI(a[i]);
int temp=0;
if(s!=0)
temp=lin.query(1,cnt,1,s,1);
int fin=length;
if(rr[i]+ll[i]-1==length)
{
if(num[ll[i]]==1)
fin--;
}
for(int j=0;j<e[i].size();j++)
{
int ss=binaryI(e[i][j].val);
if(ss!=0)
ans[e[i][j].id]+=lin.query(1,cnt,1,ss,1);
ans[e[i][j].id]=max(ans[e[i][j].id],fin);
}
lin.add(1,cnt,1,s+1,temp+1);
}
for(int i=1;i<=m;i++)
printf("%d\n",ans[i]);
return 0;
}