图像
Maxwellhang
这个作者很懒,什么都没留下…
展开
-
H264流间隔I帧取GOP
传输包的样子,每个I帧的包包含sps,pps,和I帧数据,I帧+后边的p帧(没有B帧)组成一个gop,这个包可以被单独解码。如上图所示,I帧的编码是3个nal组合而成,如果没有前两个nal,则需要缓存第一次出现的sps,pps然后每次加上。判断帧类型参考 https://blog.csdn.net/u010925568/article/details/75040492https://blog.csdn.net/jinlong0603/article/details/70170042判断的关键代码原创 2022-01-13 16:55:09 · 1958 阅读 · 0 评论 -
PIL实现色相变换
from PIL import Image,ImageColor# from torchvision.utils import make_gridimport randomfrom functools import partialdef func(x,c):return x+c if x+c <256 else 255def adj_hue(img):hue,s,v = img.split()f1 = partial(func,c=random.randint(-20,20))原创 2021-02-21 18:15:07 · 362 阅读 · 0 评论 -
caffe C++接口前馈调用
#ifndef CPU_ONLY#define CPU_ONLY#endif#include <string>#include <vector>#include <iostream>#include "caffe/caffe.hpp"#include "caffe/layers/input_layer.hpp"#include "caffe/layers/conv_layer.hpp"#include "caffe/net.hpp"#include原创 2021-02-21 17:53:19 · 122 阅读 · 0 评论 -
用快速傅里叶变换实现滤波
实验说明1. 图像是一个二维信号 I=f(x,y)I=f(x,y) 2. 图像空域的卷积等于频域的乘积 F(x,y)=F∗(f(x,y))F(x,y)=F^*(f(x,y)) 其中F∗()F^*()为傅里叶变换。由卷积的性质,设有两幅图I1I_1、I2I_2有: F1(x,y)⋅F2(x,y)=f1(x,y)⨂f2(x,y)F_1(x,y)\cdot F_2(x,原创 2017-02-22 20:51:10 · 12244 阅读 · 1 评论 -
高斯分布的点落入心形曲线的一个解决方案
给定心形曲线(x2+y2−1)3=x2y3(x^2+y^2-1)^3=x^2y^3,给定任意一点的坐标(X,Y)(X,Y)其中X~N(X,σx)X~N(X,\sigma_x),Y~N(Y,σy)Y~N(Y,\sigma_y)求点(X,Y)(X,Y)落入心形曲线内的概率。 思路: 以(X,Y)(X,Y)为中心,画出3∗σ3*\sigma半径的椭圆,求和心形曲线相交的体积。注意:心形曲线方程可化为x原创 2017-03-05 13:29:11 · 2281 阅读 · 0 评论 -
一种简单的图像显著性计算模型
一种简单的图像显著性计算模型 《Saliency Detection: A Spectral Residual Approach》是上交高材生侯晓迪在07年的CVPR上发表的一篇论文。这篇文章提出了一个图像视觉显著性的简单计算模型。有关算法原理可以参见此篇论文以及作者主页:http://www.klab.caltech.edu/~xhou/projects/spectralResidual/spe转载 2017-02-27 11:10:16 · 2298 阅读 · 0 评论 -
PCA原理及特征脸
PCA 推导PCA的matlab实现和特征脸这是之前的文章,一直没有誊过来。1. PCA 推导PCA是主成分分析,推导其实很简单。 假设有N维数据M个,组成N*M的矩阵X,希望投射到另一个空间使得沿着第一主轴的维度方差最大。设投影到第一主轴的向量为u。假设X已经去中心化,有 cov=XXTcov=XX^T 为协方差矩阵。 目标函数为: max uTXXTus.t. uTu=1max原创 2017-09-16 15:37:02 · 7563 阅读 · 2 评论 -
ICA特征脸试验
ICA特征脸和PCA的区别 1)ICA分析的是盲源独立信号2)ICA是把每一幅图作为一个特征,把每个像素点作为一个观测值,即时间t。特征脸是所有图像中统计独立的脸,各个特征脸线性加权可以重构脸。而PCA是把每一幅图作为一个观测值,而把像素点作为一个特征。特征脸是掩模系数,特征脸点乘原数据得到特征值。各特征脸之间没有重构关系。原创 2017-09-16 15:53:54 · 637 阅读 · 0 评论 -
记录快速傅里叶变换计算相关面并附tensorflow相应层代码
Fast Template Matching,J. P. Lewis#-*- coding:utf-8 -*-import numpy as npimport matplotlib.pyplot as pltimport cv2from Integral_image import *## read img #####tm_path = '/home/wdh/pytorch-CycleGA原创 2017-11-27 16:20:55 · 1291 阅读 · 1 评论