[高维随机矩阵-3] Wigner的推断

一个随机矩阵:

\begin{vmatrix} x_1& x_3 \\ x_3 & x_2 \end{vmatrix}

如果x_1x_2是随机变量,符合N(0,1)分布,x_3符合N(0, \frac{1}{2})分布,那么,这个随机矩阵的两个特征值之间的差值绝对值的概率密度函数是什么?

Wiger对此有一个推断过程,概率密度函数图形如下:

 也就是说,插值绝对值,概率最大的地方是1,超过1,那么概率就越来越小了...

非常有意思的结论,整个证明过程的技巧值得学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值