1. 启动Hadoop
cd /home/brian/usr/hadoop/hadoop-1.1.2
#格式化NameNode
./bin/hadoop namenode -format
#启动集群
./bin/start-all
#将README.txt文件复制到HDFS以供测试
./bin/hadoop fs -put README.txt readme.txt
2. Spark在本地运行,单线程
2.1 启动:
cd /home/brian/setup/spark-new/spark-0.8.0
MASTER=local ./spark-shell
2.2 测试,执行如下命令:
#从HDFS上读取文件
val textFile = sc.textFile("readme.txt")
#计算readme.txt的行数
textFile.count()
#取textFile的第一行
textFile.first()
3. Spark在本地运行,4线程
启动时候,执行的是
MASTER=local[4] ./spark-shell
其他所有流程都不变。
4. Spark运行在Standalone Mode
4.1 关闭Hadoop
4.2 启动节点:
#更改目录
cd/home/brian/setup/spark-new/spark-0.8.0
#启动master
./bin/start-master.sh
4.3 启动时候,回提示输出的log文件,tail一下,可以看到Ui Web的地址,是http://brian-i3.local:8080/,在这里能看到spark的URL:spark://brian-i3:7077。
4.4 启动一个worker:
./spark-class org.apache.spark.deploy.worker.Worker spark://brian-i3:7077
启动之后,在http://brian-i3.local:8080/会看到这个worker的数据。
4.5 在集群上执行spark-shell
MASTER=spark://brian-i3:7077 ./spark-shell
这时候,在http://brian-i3.local:8080/的Running Application栏看到spark-shell。
4.5 执行一个简单命令:
val bcv = sc.broadcast(Array(1,2,3))
bcv.value
4.6 关闭spark-shell:执行^+c即可。
4.7 关闭Spark集群:./bin/stop-master.sh
5. 以脚本的方式启动Spark集群
5.1 在spark安装目录的conf/spark-env.sh里添加如下一行:
JAVA_HOME=/usr/local/lib/jdk1.7.0_45
5.2 启动Spark集群:
./bin/start-all.sh
5.3 在http://localhost:8080可以看到集群的启动状况。
6. Spark运行在YARN和Mesos。
cd /home/brian/usr/hadoop/hadoop-1.1.2
#格式化NameNode
./bin/hadoop namenode -format
#启动集群
./bin/start-all
#将README.txt文件复制到HDFS以供测试
./bin/hadoop fs -put README.txt readme.txt
2. Spark在本地运行,单线程
2.1 启动:
cd /home/brian/setup/spark-new/spark-0.8.0
MASTER=local ./spark-shell
2.2 测试,执行如下命令:
#从HDFS上读取文件
val textFile = sc.textFile("readme.txt")
#计算readme.txt的行数
textFile.count()
#取textFile的第一行
textFile.first()
3. Spark在本地运行,4线程
启动时候,执行的是
MASTER=local[4] ./spark-shell
其他所有流程都不变。
4. Spark运行在Standalone Mode
4.1 关闭Hadoop
4.2 启动节点:
#更改目录
cd/home/brian/setup/spark-new/spark-0.8.0
#启动master
./bin/start-master.sh
4.3 启动时候,回提示输出的log文件,tail一下,可以看到Ui Web的地址,是http://brian-i3.local:8080/,在这里能看到spark的URL:spark://brian-i3:7077。
4.4 启动一个worker:
./spark-class org.apache.spark.deploy.worker.Worker spark://brian-i3:7077
启动之后,在http://brian-i3.local:8080/会看到这个worker的数据。
4.5 在集群上执行spark-shell
MASTER=spark://brian-i3:7077 ./spark-shell
这时候,在http://brian-i3.local:8080/的Running Application栏看到spark-shell。
4.5 执行一个简单命令:
val bcv = sc.broadcast(Array(1,2,3))
bcv.value
4.6 关闭spark-shell:执行^+c即可。
4.7 关闭Spark集群:./bin/stop-master.sh
5. 以脚本的方式启动Spark集群
5.1 在spark安装目录的conf/spark-env.sh里添加如下一行:
JAVA_HOME=/usr/local/lib/jdk1.7.0_45
5.2 启动Spark集群:
./bin/start-all.sh
5.3 在http://localhost:8080可以看到集群的启动状况。
6. Spark运行在YARN和Mesos。