学习笔记(4):《微电子器件》陈星弼(第四版)第2章 PN结

PN结: 指一块半导体单晶,其中一部分是P型区,其余部分是N型区。
冶金结面: P型区和N型区的交接界面。

在这里插入图片描述
单边突变结: 当突变结中某一侧的掺杂浓度远大于另一侧时,称为单边突变结。对于 N A ≫ N D 和 N A ≪ N D N_{A} \gg N_{D}和N_{A} \ll N_{D} NANDNAND这两种情况,分别称为 P + N P^{+}N P+N单边突变结 和 P N + 和PN^{+} PN+单边突变结。
一般相差 1 0 2 10^2 102数量级可理解为突变结。

线性缓变结: 冶金结面两侧的杂质浓度随距离作线性变化,杂质浓度梯度 a a a 为常数。 a = d ( N D − N A ) d x a=\frac{d(N_{D}-N_{A})}{dx} a=dxd(NDNA)

2.1PN结的平衡状态

定义:指PN结内温度均匀、稳定,没有外加电压、外加磁场、光照核辐射等外界因素的作用,宏观上达到稳定的状态。

这本书涉及的平衡状态基本由是否外加电压影响。

2.1.1 空间电荷区的形成

在这里插入图片描述

  • N A − N_{A}^- NA:带负电的受主杂质离子浓度,3价元素。
  • p p 0 p_{p0} pp0 P P P区平衡状态下,空穴的浓度。(记法为从左到右依次: 物质名称→下标:表示区域 →下标 :状态;例如 p p 0 p_{p0} pp0:从左到右依次含义为:空穴 P P P区 平衡状态)
  • n p 0 n_{p0} np0 P P P区平衡状态下,电子的浓度。
  • N D + N_{D}^+ ND+:带正电的施主杂质离子浓度,5价元素。
  • n n 0 n_{n0} nn0 N N N区平衡状态下,电子的浓度。
  • p n 0 p_{n0} pn0 N N N区平衡状态下,空穴的浓度。
  • n i n_i ni:本征激发载流子浓度。
  • 下角标“0”:代表平衡状态

(非常重要)整个过程:

平 衡 多 子 = { P 区 : p p 0 = N A ≫ n i N 区 : n n 0 = N D ≫ n i 平衡多子=\left\{ \begin{aligned} P区:p_{p0}=N_{A} \gg n_{i}\\ N区:n_{n0}=N_{D} \gg n_{i} \end{aligned} \right. ={Ppp0=NAniNnn0=NDni

利用 n 0 p 0 = n i 2 n_{0}p_{0}=n_{i}^2 n0p0=ni2(质量作用定律,半导体物理中可查),可得
f ( x ) = { P 区 : n p 0 = n i 2 p p 0 = n i 2 N A ≪ n i N 区 : p n 0 = n i 2 n n 0 = n i 2 N D ≪ n i f(x)=\left\{ \begin{aligned} P区:n_{p0}=\frac{n_{i}^2}{p_{p0}} =\frac{n_{i}^2}{N_{A}} \ll n_{i}\\ N区:p_{n0}=\frac{n_{i}^2}{n_{n0}}=\frac{n_{i}^2}{N_{D}} \ll n_{i} \end{aligned} \right. f(x)=Pnp0=pp0ni2=NAni2niNpn0=nn0ni2=NDni2ni
*(为什么 n i 2 N A ≪ n i \frac{n_{i}^2}{N_{A}} \ll n_{i} NAni2ni n i 2 N D ≪ n i \frac{n_{i}^2}{N_{D}} \ll n_{i} NDni2ni,因为 n i n_i ni一般浓度为 1.5 × 1 0 10 1.5 \times 10^{10} 1.5×1010,掺杂浓度一般为 1 × 1 0 15 1 \times 10^{15} 1×1015,经过简单的估算即可理解)
可见:
{ p p 0 ≫ n i ≫ p n 0 n n 0 ≫ n i ≫ n p 0 \left\{ \begin{aligned} p_{p0}\gg n_{i}\gg p_{n0} \\ n_{n0}\gg n_{i}\gg n_{p0} \end{aligned} \right. {pp0nipn0nn0ninp0

表示 P P P区空穴浓度大于 N N N区, N N N区电子浓度大于 P P P区。

因为有浓度差,所以载流子由浓度高向浓度低的一侧转移。

则发生漂移运动
{ 空 穴 : P → N , 空 穴 带 正 电 , 扩 散 电 流 方 向 : P → N 。 电 子 : N → P , 电 子 带 负 电 , 扩 散 电 流 方 向 : P → N 。 \left\{ \begin{aligned} 空穴:P→N,空穴带正电,扩散电流方向:P→N。 \\ 电子:N→P,电子带负电,扩散电流方向:P→N。 \end{aligned} \right. {PNPNNPPN

浓度差存在会引起扩散电流,方向为由 P P P 区指向 N N N 区。

P P P 区留下 N A − N_{A}^{-} NA N N N区留下 N D + N_{D}^{+} ND+,形成空间电荷区。

空间电荷区产生的电场称为 内建电场,方向为由 N N N区指向 P P P 区。

{ 空 穴 : 空 穴 带 正 电 , 受 电 场 方 向 N → P , 漂 移 电 流 方 向 : N → P 。 电 子 : 电 子 带 负 电 , 受 电 场 方 向 P → N , 漂 移 电 流 方 向 : N → P 。 \left\{ \begin{aligned} 空穴:空穴带正电,受电场方向N→P,漂移电流方向:N→P。 \\ 电子:电子带负电,受电场方向P→N,漂移电流方向:N→P。 \end{aligned} \right. {NPNPPNNP
电场的存在会引起漂移电流,方向为由 N N N 区指向 P P P 区。

达到平衡时,净电流 = 0 。于是就形成一个稳定的有一定宽度的空间电荷区。
注意一下,此时的平衡为多子扩散和少子漂移的平衡。

2.1.2 内建电场、内建电势与耗尽区宽度

1. 耗尽近似与中性近似

耗尽近似: 假设空间电荷区内的载流子完全扩散掉,即完全耗尽,空间电荷完全由电离杂质提供。这时空间电荷区又可称为“耗尽区”。
中性近似: 假设耗尽区以外多子浓度等于电离杂质浓度 ,因而保持电中性。这时这部分区域又可称为“中性区”。

在这里插入图片描述

2. 内建电场

由泊松方程可以得到(证明略):
{ N 区 耗 尽 区 : E ⃗ ( x ⃗ ) = q ε s ( x ⃗ − x ⃗ n ) N D P 区 耗 尽 区 : E ⃗ ( x ⃗ ) = q ε s ( x ⃗ + x ⃗ p ) N A \left\{ \begin{aligned} N区耗尽区:\vec E(\vec x)= \frac{q}{\varepsilon_s}(\vec x-\vec x_n)N_D \\ P区耗尽区:\vec E(\vec x)= \frac{q}{\varepsilon_s}(\vec x+\vec x_p)N_A \end{aligned} \right. NE x =εsq(x x n)NDPE x =εsq(x +x p)NA

  • x ⃗ p \vec x_p x p P P P区耗尽层宽度。
  • x ⃗ n \vec x_n x n N N N区耗尽层宽度。
  • ε s \varepsilon_s εs:半导体电容率
    在这里插入图片描述

可以看出,载流子浓度决定斜率,浓度不变斜率不变。

∣ E ( x ) ∣ \vert E(x)\vert E(x)是为纵坐标了方便看,没啥特殊意义。

3. 耗尽区宽度

由上面的电场强度表达式可以得到 x n 、 x p x_n、x_{p} xnxp,设耗尽区宽度为 x d x_{d} xd,则:
x n = ε s q N D ∣ E ∣ m a x x p = ε s q N A ∣ E ∣ m a x x d = x n + x p = ε s q ⋅ N A + N D N A N D ∣ E ∣ m a x = ε s q N 0 ∣ E ∣ m a x x_n=\frac{\varepsilon_s}{qN_D}\vert E\vert_{max}\\ x_p=\frac{\varepsilon_s}{qN_A}\vert E\vert_{max} \\ x_d=x_n + x_{p}= \frac{\varepsilon_s}{q} \cdot \frac{N_A+N_D}{N_AN_D}\vert E\vert_{max}= \frac{\varepsilon_s}{qN_0}\vert E\vert_{max} xn=qNDεsEmaxxp=qNAεsEmaxxd=xn+xp=qεsNANDNA+NDEmax=qN0εsEmax

  • N 0 N_0 N0约化浓度 N 0 = N A N D N A + N D N_0=\frac{N_AN_D}{N_A+N_D} N0=NA+NDNAND

可以看出,掺杂浓度越高,耗尽区越窄。

4. 内建电势

对内建立电场求积分可得内建电势,可以用数学方法也可以用图像法。数学方法用牛顿莱布尼兹公式,图像法是求电场的三角形面积。

积分得:
V b i = ε s 2 q N 0 ∣ E ∣ m a x 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ① V_{bi}=\frac{\varepsilon_s}{2qN_0} \vert E \vert_{max}^2 \cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot ① Vbi=2qN0εsEmax2
然而,有四个未知量 V b i 、 x n 、 x p 、 ∣ E ∣ m a x V_{bi}、x_n、x_p、\vert E \vert{max} VbixnxpEmax,一个方程解一个未知量,上面有了一个方程,所以还得3个方程。由前面已知:

{ x n = ε s q N D ∣ E ∣ m a x ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ② x p = ε s q N A ∣ E ∣ m a x ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ③ \left\{ \begin{aligned} x_n = \frac{\varepsilon_s}{qN_D}\vert E\vert_{max}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot②\\ x_p = \frac{\varepsilon_s}{qN_A}\vert E\vert_{max}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot③ \end{aligned} \right. xn=qNDεsEmaxxp=qNAεsEmax
还差一个方程,已知在平衡 P N PN PN结中,净的空穴电流和净的电子电流均为0,则有:
J p = q μ p p E − q D P d p d x = 0 J_p=q\mu_ppE-qD_P \frac{dp}{dx}=0 Jp=qμppEqDPdxdp=0
积分得:
E ( x ) = D p μ p ⋅ 1 p ⋅ d p d x = k T q ⋅ d l n p d x E(x)=\frac{D_p}{\mu_p}\cdot\frac{1}{p}\cdot\frac{dp}{dx}= \frac{kT}{q} \cdot \frac{dlnp}{dx} E(x)=μpDpp1dxdp=qkTdxdlnp
(爱因斯坦关系: D p μ p = k T q \frac{D_p}{\mu_p}=\frac{kT}{q} μpDp=qkT k k k代表玻尔兹曼常数, T T T代表热力学温度。)
V b i = k T q l n p p 0 p n 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ④ V_{bi}=\frac{kT}{q}ln\frac{p_{p0}}{p_{n0}}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot④ Vbi=qkTlnpn0pp0
联立①②③④,得 V b i V_{bi} Vbi
V b i = k T q l n N A N D n i 2 V_{bi}=\frac{kT}{q}ln\frac{N_AN_D}{n_i^2} Vbi=qkTlnni2NAND

由该式子可以得到 V b i V_{bi} Vbi N D 、 N A 、 n i N_D、N_A、n_i NDNAni有关。

  • n i n_i ni由禁带宽度( E g E_g Eg)决定, E g E_g Eg越宽 n i n_i ni越小。
  • P N PN PN结的 V b i V_{bi} Vbi一般在0.8V左右,锗 P N PN PN结的 V b i V_{bi} Vbi一般在0.35V左右。

一般解题思路:
先求 V b i V_{bi} Vbi ∣ E ∣ m a x \vert E \vert{max} Emax x n 、 x p x_n、x_p xnxp x d x_d xd

5. 单边突变结的情形

对于 P + N P^+N P+N单边突变结:
∵ N A ≫ N D , N 0 = N A N D N A + N D ≈ N A N D N A ≈ N D \because N_A \gg N_D,N_0=\frac{N_AN_D}{N_A+N_D} \approx\frac{N_AN_D}{N_A} \approx N_D NAND,N0=NA+NDNANDNANANDND
∴ x d ≈ x n ≈ ε s q N D ∣ E ∣ m a x , ∣ E ∣ m a x = ( 2 q N D ε s V b i ) \therefore x_d\approx x_n \approx \frac{\varepsilon_s}{qN_D}\vert E\vert_{max}, \vert E\vert_{max}=(\frac{2qN_D}{\varepsilon_s}V_{bi}) xdxnqNDεsEmax,Emax=(εs2qNDVbi)
在这里插入图片描述
对于 P N + PN^+ PN+单边突变结:
∵ N D ≫ N A , N 0 ≈ N A \because N_D \gg N_A,N_0 \approx N_A NDNA,N0NA
∴ x d ≈ x p ≈ ε s q N A ∣ E ∣ m a x , ∣ E ∣ m a x = ( 2 q N A ε s V b i ) \therefore x_d\approx x_p \approx \frac{\varepsilon_s}{qN_A}\vert E\vert_{max}, \vert E\vert_{max}=(\frac{2qN_A}{\varepsilon_s}V_{bi}) xdxpqNAεsEmax,Emax=(εs2qNAVbi)
对
可见,耗尽区主要分布在低掺杂的一侧,耗尽区宽度与电场强度也主要取决于低掺杂一侧的杂质浓度。

2.1.3 能带图

1.能带图

已知突变结耗尽区内的电场分布 E ( x ) E(x) E(x) 后 ,对 E ( x ) E(x) E(x)作一次积分就可以求出耗尽区内的 电位分布 Ψ ( x ) \Psi(x) Ψ(x) 以及电子的电位能 − q Ψ ( x ) -q\Psi(x) qΨ(x) 分布。
在平衡状态下 P N PN PN 结能带图中的费米能级 E F E_F EF 是水平的 ,而耗尽区中的导带底 E C E_C EC、价带顶 E V E_V EV 与本征费米能级 E i E_i Ei 则均与电子电位能分布 − q Ψ ( x ) -q\Psi(x) qΨ(x)有相同的形状,因此平衡 P N PN PN 结的能带图如下图所示。
在这里插入图片描述
在这里插入图片描述
在能带图中,对空穴而言,越向下其电位能越高;对电子而言,越向下电位能越低。

2. 载流子的浓度分布

根据半导体物理知识(记住就行),在非简并条件下,载流子浓度虽随能量的分布遵守玻尔兹曼分布,表示为:

{ n = n i e x p ( − E i − E F k T ) p = n i e x p ( − E F − E i k T ) \left\{ \begin{aligned} n=n_i exp(-\frac{E_i-E_F}{kT}) \\ p=n_i exp(-\frac{E_F-E_i}{kT}) \end{aligned} \right. n=niexp(kTEiEF)p=niexp(kTEFEi)
根据能带图:
E i ( x ) = E i ( x n ) − q Ψ ( x ) E_i(x)=E_i(x_n)-q\Psi(x) Ei(x)=Ei(xn)qΨ(x)

  • E i ( x n ) E_i(x_n) Ei(xn) N N N区边界处的本征费米能级,等于 N N N区中性区的。

对电子可得:
n ( x ) = n i e x p ( − E i − E F k T ) = n i e x p ( − E i ( x n ) − q Ψ ( x ) − E F k T ) = n i e x p [ − E i ( x n ) − E F k T ] e x p [ q Ψ ( x ) k T ] = n n 0 e x p [ q Ψ ( x ) k T ] \begin{aligned} n(x) & =n_iexp(-\frac{E_i-E_F}{kT})\\ & =n_iexp(-\frac{E_i(x_n)-q\Psi(x)-E_F}{kT})\\ & = n_iexp[-\frac{E_i(x_n)-E_F}{kT}]exp[\frac{q\Psi(x)}{kT}]\\ & = n_{n0}exp[\frac{q\Psi(x)}{kT}] \end{aligned} n(x)=niexp(kTEiEF)=niexp(kTEi(xn)qΨ(x)EF)=niexp[kTEi(xn)EF]exp[kTqΨ(x)]=nn0exp[kTqΨ(x)]

同理,对空穴可得:
p ( x ) = n i e x p ( − E F − E i ( x n ) + q Ψ ( x ) k T ) = n i e x p ( − E F − E i ( x n ) − q V b i + q V b i + q Ψ ( x ) k T ) = n i e x p [ − E F − E i ( − x p ) k T ] e x p [ − q Ψ ( x ) + q V b i k T ] = p p 0 e x p [ − q Ψ ( x ) + q V b i k T ] \begin{aligned} p(x) & =n_iexp(-\frac{E_F-E_i(x_n)+q\Psi(x)}{kT})\\ & =n_iexp(-\frac{E_F-E_i(x_n)-qV_{bi}+qV_{bi}+q\Psi(x)}{kT})\\ & =n_iexp[-\frac{E_F-E_i(-x_p)}{kT}]exp[-\frac{q\Psi(x)+qV_{bi}}{kT}]\\ & =p_{p0}exp[-\frac{q\Psi(x)+qV_{bi}}{kT}] \end{aligned} p(x)=niexp(kTEFEi(xn)+qΨ(x))=niexp(kTEFEi(xn)qVbi+qVbi+qΨ(x))=niexp[kTEFEi(xp)]exp[kTqΨ(x)+qVbi]=pp0exp[kTqΨ(x)+qVbi]

结合 V b i V_{bi} Vbi表达式,得到结定律边界条件:
{ x = − x p 处 , Ψ ( x ) = − V b i , n ( − x p ) = n n 0 e x p [ − V b i k T ] , p ( − x p ) = p p 0 x = x n 处 , Ψ ( x ) = 0 , n ( x n ) = n n 0 , p ( x n ) = p p 0 e x p [ − V b i k T ] \left\{ \begin{aligned} x & =-x_p处,\Psi(x)=-V_{bi},n(-x_p)= n_{n0}exp[-\frac{V_{bi}}{kT}],p(-x_p)=p_{p0} \\ x&=x_n处,\Psi(x)=0,n(x_n)= n_{n0},p(x_n)=p_{p0}exp[-\frac{V_{bi}}{kT}] \end{aligned} \right. xx=xpΨ(x)=Vbin(xp)=nn0exp[kTVbi]p(xp)=pp0=xnΨ(x)=0n(xn)=nn0p(xn)=pp0exp[kTVbi]

这里不是特别重要,主要后面要用到结定律。

2.1.4 线性缓变结

线性缓变结中: N ( x ) = N D − N A = a x N(x)=N_D-N_A=ax N(x)=NDNA=ax
在这里插入图片描述
由泊松方程可得: d E d x = q ε s ( N D − N A ) = q a x x \frac{dE}{dx}=\frac{q}{\varepsilon_s}(N_D-N_A)=\frac{qa}{x}x dxdE=εsq(NDNA)=xqax

积分可得: ∣ E ∣ = ∣ E ∣ m a x ⋅ [ 1 − ( 2 x x d ) 2 ] \vert E \vert=\vert E \vert_{max}\cdot[1-(\frac{2x}{x_d})^2] E=Emax[1(xd2x)2]

边界条件为: E ( − x d 2 ) = E ( x d 2 ) = 0 E(-\frac{x_d}{2})=E(\frac{x_d}{2})=0 E(2xd)=E(2xd)=0

由上述条件可得: ∣ E ∣ m a x = a q x d 2 8 ε s \vert E \vert_{max}=\frac{aqx_d^2}{8\varepsilon_s} Emax=8εsaqxd2

在这里插入图片描述

内建电势由对 ∣ E ∣ \vert E \vert E积分可得:
V b i = ∫ − x d 2 x d 2 ∣ E ∣ d x = 2 3 ∣ E ∣ m a x x d x d = ( 12 ε s V b i a q ) 1 3 ∣ E ∣ m a x = 1 8 ( a q ε s ) 1 3 ( 12 V b i ) 2 3 V_{bi}=\int_{-\frac{x_d}{2}}^{\frac{x_d}{2}} \vert E \vert dx=\frac{2}{3}\vert E \vert_{max}x_d \\ x_d=(\frac{12\varepsilon_sV_{bi}}{aq})^{\frac{1}{3}}\\ \vert E \vert_{max}=\frac{1}{8}(\frac{aq}{\varepsilon_s})^{\frac{1}{3}}(12V_{bi})^{\frac{2}{3}} Vbi=2xd2xdEdx=32Emaxxdxd=(aq12εsVbi)31Emax=81(εsaq)31(12Vbi)32

在线性缓变结中, N A 和 N D N_A和N_D NAND分别为耗尽区边界杂质浓度,即:
N ( − x d 2 ) = N ( x d 2 ) = a x d 2 N(-\frac{x_d}{2})=N(\frac{x_d}{2})=\frac{ax_d}{2} N(2xd)=N(2xd)=2axd

所以 V b i = k T q l n N A N D n i 2 = k T q l n ( a x d 2 n i ) 2 V_{bi}=\frac{kT}{q}ln\frac{N_AN_D}{n_i^2}=\frac{kT}{q}ln(\frac{ax_d}{2n_i})^2 Vbi=qkTlnni2NAND=qkTln(2niaxd)2

以上关于平衡 P N PN PN结的各公式,都可推广到有外加电压时的情形 。 如果设外加电压全部降落在耗尽区上,则只需将各公式中的 V b i V_{bi} Vbi ( V b i − V ) (V_{bi}-V) (VbiV)代替即可。注意外加电压的参考极性与 V b i V_{bi} Vbi 相反。

2.1.5 耗尽近似和中性近似的适用性

以上在求解泊松方程时采用了耗尽近似和中性近似。实际上载流子在所谓的耗尽区内并未严格耗尽,这从 n ( x ) n(x) n(x) p ( x ) p(x) p(x)的表达式也可看出来。载流子浓度在耗尽区和中性区的边界附近也是逐渐过渡的,在中性区中靠近耗尽区的地方,载流子浓度已开始减少。然而严格的计算表明,精确结果与采用耗尽近似所得到的结果是相当接近的,采用耗尽近似不致引入太大的误差,但却可使计算大为简化。所以耗尽近似在分析半导体器件时得到了广泛的应用。

此内容为非考试内容,了解即可。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值