神、上帝以及老天爷
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 18738 Accepted Submission(s): 7958
Problem Description
HDU 2006'10 ACM contest的颁奖晚会隆重开始了!
为了活跃气氛,组织者举行了一个别开生面、奖品丰厚的抽奖活动,这个活动的具体要求是这样的:
首先,所有参加晚会的人员都将一张写有自己名字的字条放入抽奖箱中;
然后,待所有字条加入完毕,每人从箱中取一个字条;
最后,如果取得的字条上写的就是自己的名字,那么“恭喜你,中奖了!”
大家可以想象一下当时的气氛之热烈,毕竟中奖者的奖品是大家梦寐以求的Twins签名照呀!不过,正如所有试图设计的喜剧往往以悲剧结尾,这次抽奖活动最后竟然没有一个人中奖!
我的神、上帝以及老天爷呀,怎么会这样呢?
不过,先不要激动,现在问题来了,你能计算一下发生这种情况的概率吗?
不会算?难道你也想以悲剧结尾?!
为了活跃气氛,组织者举行了一个别开生面、奖品丰厚的抽奖活动,这个活动的具体要求是这样的:
首先,所有参加晚会的人员都将一张写有自己名字的字条放入抽奖箱中;
然后,待所有字条加入完毕,每人从箱中取一个字条;
最后,如果取得的字条上写的就是自己的名字,那么“恭喜你,中奖了!”
大家可以想象一下当时的气氛之热烈,毕竟中奖者的奖品是大家梦寐以求的Twins签名照呀!不过,正如所有试图设计的喜剧往往以悲剧结尾,这次抽奖活动最后竟然没有一个人中奖!
我的神、上帝以及老天爷呀,怎么会这样呢?
不过,先不要激动,现在问题来了,你能计算一下发生这种情况的概率吗?
不会算?难道你也想以悲剧结尾?!
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(1<n<=20),表示参加抽奖的人数。
Output
对于每个测试实例,请输出发生这种情况的百分比,每个实例的输出占一行, 结果保留两位小数(四舍五入),具体格式请参照sample output。
Sample Input
1 2
Sample Output
50.00%
#include <iostream>
#include <cmath>
#include <iomanip>
using namespace std;
const double e = exp(1.0);
int main()
{
double tep=1.0;
double ans[21]; ans[1]=0;
for(int i=2; i<=20; i++){
tep *= i;
ans[i]=round(tep/e)/tep;
}
int t,n;
cin>>t;
while(t--){
cin>>n;
cout<<fixed<<setprecision(2)<<ans[n]*100<<"%"<<endl;
}
return 0;
}
递推数列法[编辑]
对于排列数较多的情况,难以采用枚举法。这时可以用递归思想推导错排数的递推公式。
显然D1=0,D2=1。当n≥3时,不妨设n排在了第k位,其中k≠n,也就是1≤k≤n-1。那么我们现在考虑第n位的情况。
- 当k排在第n位时,除了n和k以外还有n-2个数,其错排数为Dn-2。
- 当k不排在第n位时,那么将第n位重新考虑成一个新的“第k位”,这时的包括k在内的剩下n-1个数的每一种错排,都等价于只有n-1个数时的错排(只是其中的第k位会换成第n位)。其错排数为Dn-1。
所以当n排在第k位时共有Dn-2+Dn-1种错排方法,又k有从1到n-1共n-1种取法,我们可以得到:
- D n=(n-1)(D n-1+D n-2) [2]
-
-
错位排列数的公式可以简化为:Dn=[n!/e+0.5] 高斯取整