2024-09-29 ,NeurIPS发布首个面向专业人士的大型语言模型图分析数据集GraphPro。这是首个目的测试和提升LLMs在图分析任务上表现的基准。该数据集的创建不仅填补了现有基准测试的空白,还为LLMs在图分析领域的应用提供了新的视角。
一、研究背景:
图分析在多个领域中都扮演着至关重要的角色,包括社交网络分析、生物信息学、推荐系统等。然而,现有的LLMs在处理图数据时,往往只能处理小规模的图,且依赖于直接的提示推理,这限制了它们处理大规模复杂图的能力。
目前遇到困难和挑战:
1、图规模的限制:现有的LLMs在处理大规模图时表现不佳。
2、缺乏专业的图分析能力:LLMs需要更专业的图分析方法,而不仅仅是基于提示的推理。
3、数据集的缺乏:缺少能够测试和提升LLMs在图分析上表现的数据集。
数据集地址:ProGraph|图形分析数据集|大型语言模型数据集
二、让我们一起来看一下GraphPro数据集:
GraphPro是一个全新的基准测试,旨在通过编程解决方案来挑战和提升LLMs在图分析任务上的能力。 由NeurIPS社区精心设计,包含三个类别的图任务,要求解决方案基于编程而不是直接推理。
数据集特点
1、多类别任务:涵盖从简单到复杂的多种图分析任务。
2、编程解决方案:要求基于编程库来解决问题,模拟专业人士的工作方式。
3、大规模图数据:包含大规模图数据,以测试LLMs的极限。
数据集使用方法
-
文档检索:通过检索相关文档来增强LLMs的理解能力。
-
代码微调:在开源代码上微调LLMs,以提升其图分析的准确性。
基准测试
性能测试:测试了当前最佳模型在GraphPro上的表现,发现准确率仅为36%。
改进策略:提出了通过文档检索和代码微调来提升LLMs性能的方法。
三、让我们一起展望GraphPro数据集应用:
比如,我是一名社交网络分析师。
我的工作就是弄清楚人们在社交网络上是如何互动的。我经常盯着那些复杂的网络图,一个节点一个节点地分析,看看谁和谁经常互动,谁可能是社交圈里的大V或者意见领袖。
这活儿可不轻松,我需要手动整理数据,画图,分析模式,有时候还得写代码来帮助分析。这不仅耗时耗力,而且有时候还会出错,毕竟人脑处理这么多数据还是有点力不从心的。
但现在,有了通过GraphPro这个数据集训练的智能系统
智能系统就像是有了读心术一样,能够快速识别出哪些用户群体是关键的,哪些节点是影响力节点。我只需要给它一些数据,它就能给你一个清晰的分析结果,告诉我哪些人是社交网络中的活跃分子,哪些人可能是潜在的营销目标。
而且,这个模型还能帮我发现一些你以前可能没注意到的模式,比如某些用户群体的特定行为模式,或者是某些话题如何在网络中传播。这样,我的分析就更加深入和全面了。
总的来说,我的工作变得更加高效和准确。我不再需要花费大量时间去手动分析数据,而是可以把时间用在更有价值的策略制定和决策上。这就像是我从骑自行车升级到了开跑车,速度和体验都提升了一个档次。噢耶。