旅行商问题(TSP)的两种模型

本文介绍了旅行商问题(TSP)的基本概念和两种不同的数学模型。模型A通过限制子集连边数防止子环,而模型B利用变量u确保路径递增无环。虽然模型A直观,但规模增大时约束增多;模型B则因简洁的约束表达在计算上更具优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TSP简介

一个商人从一点出发,经过所有点后返回原点。它需要满足:除起点和终点外,所有点当且仅当经过一次;起点与终点重合;所有点构成一个连通图。要求:得到这个商人经过所有点的最短路程。

TSP模型表示

设x[i][j]是一个0-1变量,其中1表示点i与点j之间有连边,0表示这两点之间无连边,值得注意的是:x[i][j]不一定等于x[j][i]。

设c[i][j]表示点i到点j的距离,同理,c[i][j]不一定等于c[j][i]。

目标函数:

min sum(x[i][j]*c[i][j]) i,j分别遍历(博客中插入公式不会,暂且这么表示,该公式是一个二维for循环,分别遍历i和j)

约束条件:

根据题目描述:所有点经过且只经过一次,并且构成一个环,因此任意一点的出度等于入度等于1,即需要满足如下两个约束:

1.sum(x[i][j])=1,遍历i (该公式表示点j的入度等于1)

2.sum(x[i][j])=1,遍历j (该公式表示点i的出度等于1)

若只有以上两个约束条件,则形成的解中可能会产生若干个独立的环,即所有点不能构成一个连通块。为打破子环的存在,还需加入一个约束条件。基于不同的角度,有两种不同的约束方式,从而产生两种不同的TSP数学模型,鉴于网上对两种模型的比较较少,且介绍较为简单,同时由于前面几个目标函数和约束1 2 的意义明确,因此本博文主要想介绍这两种不同的约束的理由及各自优缺点。

A:sum(x[i

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值