以文本分类算法为中心,详细介绍一个中文文本分类项目的流程及相关知识,知识点涉及中文分词、向量空间模型、TF-IDF方法、几个典型的文本分类算法;主要有朴素贝叶斯算法,kNN最近邻算法。
所用到的外部库:jieba 分词、Scikit-Learning
文本挖掘(Text Mining)是从非结构化文本信息中获取用户感兴趣或者有用的模式的过程。是指从大量文本数据中抽取事先未知的、可理解的、最终可用的知识的过程,同时运用这些知识更好地组织信息以便将来参考。
在分析机器学习的数据源中最常见的知识发现主题是把数据对象或事件转换为预定的类别,再根据类别进行专门的处理,这是分类系统的基本任务。
当前有两种主要的文本分类方法,一种是基于模式系统(通过运用知识工程技术),还有一种是分类模式(通过使用统计/或机器学习技术)。专家系统的方法是将专家的知识以规则表达式的形式编码成分类系统。机器学习的方法是一个广义的归纳的过程,采用一组预分类的例子,通过训练建立分类。
中文语言的文本分类技术和流程
- 预处理:去除文本的噪声信息
- 中文分词:使用中文分词器为文本分词,并去除停用词
- 构建词向量空间:统计文本词频,生成文本的词向量空间
- 权重策略——TF-IDF方法:使用TF-IDF发现特征词,并抽取为反映文档主题特征
- 分类器:使用算法训练分类器
- 评价分类结果:分类器的测试结果分析
文本预处理
文本处理的核心任务就是要把非结构化和半结构化的文本转换为结构化的形式,即向量空间模型