大气密度模型:Jacchia-Robert

10 篇文章 3 订阅
7 篇文章 0 订阅

在使用STK进行卫星轨道计算时,采用高精度轨道积分器(HPOP)会涉及到大气阻力的设置,见下图,其中大气密度模型缺省选择的为Jacchia-Robert。其中涉及到的参数有:

  • Cd:大气阻力系数 C D C_D CD
  • Aere/Mass Ratio:卫星的面值比 A / m A/m A/m
  • Atmoshpheic Density Model:大气密度模型(缺省为:Jacchia-Robert)
  • Daily F10.7:太阳辐射通量 F 10.7 F10.7 F10.7
  • Average F10.7:81天平均太阳辐射通量 F ˉ 10.7 \bar{F}10.7 Fˉ10.7
  • Geomagnetic Index(Kp):行星3小时地磁指数Kp

STK中的大气阻力设置
本文介绍在轨道力学中常用的大气密度模型:Jacchia-Robert,主要用于地球卫星的大气阻力计算。

注意!!本文不讨论125km以下的大气密度,这个是飞机、高超滑行飞行器需要考虑的范畴。

大气阻力公式

在近地轨道(300km-2000km),地球大气的阻力不容忽视,尤其对于500km高度以下的卫星,阻力作用明显。大气阻力对卫星产生一个阻力的作用,阻力公式为:
F ⃗ d r a g = − 1 2 ρ ( C D A m ) V r V ⃗ r \vec{F}_{drag}=-\frac{1}{2}\rho(\frac{C_DA}{m})V_r\vec{V}_r F drag=21ρ(mCDA)VrV r
其中:
ρ \rho ρ:卫星所在位置处的大气密度
A / m A/m A/m:即卫星的面质比系数,即卫星的迎风面积和质量的比值
C D C_D CD:大气阻力系数。(一般取2.2)
V ⃗ r \vec{V}_r V r:卫星在地心惯性系中相对大气的速度

对于大气密度而言,虽然上面仅仅是一个参数,但是却与许多参数有关。

大气密度概述

最简单,也最容易计算的大气密度模型为静止大气模型,即考虑地球为一圆球体,大气密度随着高度呈指数衰减。大气密度仅仅与高度相关,与地固系下具体位置无关,也与太阳辐射和地磁通量无关。

显然,静止大气模型容易计算,但是却与实际情形不符合。对于近地轨道,地球大气密度与太阳辐射和地磁通量密切相关,从而导致地球上空每个地方的密度都不相同,且随着时间的变化而变化,见下图。

大气密度的变化
简单来说,大气密度与大气温度密切相关,而大气温度主要受到太阳辐射和地磁活动影响(称之为空间环境扰动),从而造成地球上空每个地方的温度都不一样!!

空间环境扰动可以引起大气密度的剧烈变化,若大气密度在短时间内快速上升,卫星受到的大气阻力也会突然增加,从而加快卫星轨道的衰减。比如,美国“哥伦比亚”号航天飞机在1981年4月12日飞行时,遇到一次剧烈的空间环境扰动事件,陡增的大气密度导致该航天飞机下降到较低轨道的时间比预期快了60%。

再比如1989年3月份的“卡林顿事件”中,空间环境的剧烈扰动引起大气密度急剧增加,使840km高度的大气密度增加了9倍。大气密度的剧增引起了美国的太阳峰年卫星(SMM)在整个事件期间的运行高度下降了5km,从而提前陨落。

卡林顿事件期间,空间环境出现剧烈扰动,大气密度急剧增加
假定T时刻,卫星在地固系下的位置为 r ⃗ s a t \vec{r}_{sat} r sat,那么卫星所在位置的大气密度主要受到以下几点影响:

  • 太阳辐射对大气的温度影响( F 10.7 F10.7 F10.7参数和 F ˉ 10.7 \bar{F}10.7 Fˉ10.7参数,)
  • 地磁辐射对大气的温度影响(Kp指数)
  • T时刻太阳的位置( r ⃗ s u n \vec{r}_{sun} r sun

因此,计算给定位置 r ⃗ s a t \vec{r}_{sat} r sat处的大气密度时,需要的参数为: F 10.7 F10.7 F10.7 F ˉ 10.7 \bar{F}10.7 Fˉ10.7、Kp,以及具体计算大气密度的模型。

下面首先介绍太阳和地磁辐射参数,然后详细介绍Jacchia-Robert的大气密度模型

太阳辐射通量(F10.7)

太阳活动是影响大气的主要因素,常见的太阳活动指数包括太阳黑子数SSN及10.7厘米射电辐射通量F10.7。

太阳黑子,是人们最早观测到的太阳活动现象。1843年,德国天文爱好者施瓦布通过日常观测发现了太阳黑子数量的多少存在11年左右的周期。之后,随着观测数据的增加,这一规律不断被证实,并且人们发现黑子数的多少与这个时期的太阳活跃程度相对应。于是,太阳黑子数的这种规律变化成为人们划分太阳活动周期的标志,黑子数量的高峰年称为太阳活动峰年,黑子数最少年称为太阳活动低年,两次低年之间定为一个太阳活动周。

除了太阳黑子数之外,人们还发现了另一种能代表太阳活动周变化的参量—10.7cm射电流量(F10.7)。

太阳向宇宙空间发射(太阳高层大气的辐射)的电磁波中,波长从毫米到十米不等,其中,10.7cm波长(2800MHz)属于极紫外辐射。地球高层大气吸收太阳极紫外辐射,吸收能量的20%~30%用来加热高层大气。

定义10.7cm波长的射电辐射通量的大小为太阳辐射通量指数,也称F107指数(常用F10.7表示)。F10.7的单位为"太阳通量单位"(SFU),具体数值为:
1 S F U = 1 0 − 22 W / m 2 / H z 1SFU=10^{-22}W/m^2/Hz 1SFU=1022W/m2/Hz
从长期的监测中人们发现,F10.7和太阳黑子数有很强的相关性,F10.7值的大小也能很好地代表太阳活动的强弱,并且由于F10.7在地面就可以监测获取,长久以来在许多重要的电离层和中高层大气模型中,通常都是以F10.7作为输入来表征太阳活动的水平。因此,无论是过去、现在,还是未来,F10.7监测在太阳活动预报和研究中都将具有举足轻重的地位。

F10.7指数的范围在60到300之间,中国气象标准规定了太阳活动水平的分级, 按F107指数对太阳活动水平进行划分如下:

等级F10.7数值
很低 − 80 -80 80
80 − 100 80-100 80100
100 − 150 100-150 100150
150 − 200 150-200 150200
很高 200 − 200- 200

F107指数分为两种,一种是每天的观测值 F 10.7 F10.7 F10.7,另一种是81天(3个太阳自转周期)的平均值 F ˉ 10.7 \bar{F}10.7 Fˉ10.7,见下图。
太阳通量指数F107

地磁指数(kp或Ap)

地磁扰动会引起大气离子化,从而引起大气密度的变化。

全球范围内有12个站实时监测地磁的变化,并以相对安静时的磁场作为参考,对地磁观测的三个分量中在水平两分量扰动的平均值,每三小时给出地磁扰动强度的指数,称为三小时磁情指数 a p a_p ap(3-hourly index)。 a p a_p ap的单位为2纳特(nT)。
1 n T = 1 0 − 9 T e s l a 1nT = 10^{-9}Tesla 1nT=109Tesla
把一天分为8个时间段,每段三小时,每段都有一个指数 a p a_p ap,一天8个数值,取其平均值则得到 A p A_p Ap,称为日行星振幅(daily planetary amplitude)。

a p a_p ap A p A_p Ap数值范围为0-400,数值越大,地磁扰动越强,一般大于100就很少见,常见的数值在10-20左右。

a p a_p ap数值相对应的是行星指数 K p K_p Kp(planetary index),它与 a p a_p ap为准对数关系,且一一对应,因此 K p K_p Kp也是3小时一个数值,数值范围0-9,越大表示地磁活动越强。

K p K_p Kp的数值对地磁暴的等级进行分类如下:

磁暴等级 K p K_p Kp数值
平静 0 − 2 0-2 02
扰动 2 − 3 2-3 23
活跃 3 − 4 3-4 34
小磁暴 4 − 5 4-5 45
大磁暴 5 − 6.5 5-6.5 56.5
严重磁暴6.5-9

a p a_p ap K p K_p Kp的关系如下表。
地磁指数Kp和ap的关系
两者对应的关系如下图,以对数方式画出。
在这里插入图片描述
地磁指数 a p a_p ap K p K_p Kp的相互转换可以使用3次多项式进行插值,此处不再详述。

太阳和地磁指数的数据获取与计算

太阳通量指数 F 10.7 F10.7 F10.7 F ˉ 10.7 \bar{F}10.7 Fˉ10.7,以及地磁指数 a p a_p ap A p ) A_p) Ap) K p K_p Kp在网上可以查询到每天的数据,本文给出几个来源:

其中,Celestrak网站上给出的数据包含了上述几个指数,包括3小时指数和日平均指数,数据格式见下图。
Celestrak网站上的太空天气
计算时,需要根据当前时刻T根据给定的数据得到 F 10.7 、 F ˉ 10.7 、 K p F10.7、\bar{F}10.7、K_p F10.7Fˉ10.7Kp,等参数。

也可以简化,取常数:
F 10.7 = F ˉ 10.7 = 150.0 K p = 3.0 F10.7=\bar{F}10.7=150.0\\ K_p=3.0 F10.7=Fˉ10.7=150.0Kp=3.0

STK默认的大气密度设置中,上述三个参数就是这几个常数。

Jacchia-Robert大气密度模型

Jacchia-Roberts大气密度模型是一种用于描述大气层密度分布的数学模型。该模型由意大利科学家J. M. Jacchia和美国科学家L. G. Roberts在20世纪60年代开发。

Jacchia-Roberts模型旨在提供大气层密度的近似值,以便用于空间科学和工程应用中,例如卫星轨道预测、再入飞行器设计等。该模型基于大量的大气观测数据,并利用统计方法来拟合这些观测数据,以获得对大气密度的预测。

Jacchia-Roberts模型考虑了多种影响大气密度的因素,包括太阳活动、地球磁场、大气成分等。它将大气层分为多个不同的层次,并使用复杂的数学公式来描述每个层次的密度分布。模型的输入参数包括高度、纬度、经度、时间等。

需要注意的是,Jacchia-Roberts模型是一种经验模型,它的准确性可能会受到多种因素的影响,例如地理位置、季节变化、太阳活动等。因此,在具体的应用中,可能需要根据实际情况进行调整或采用其他更精确的模型。

总而言之,Jacchia-Roberts大气密度模型是一种常用的近似模型,用于估计大气层密度分布,特别适用于空间科学和工程领域的应用。

大气密度模型计算的思路为:外层大气温度受太阳辐射和地磁活动的影响并且存在周日变化,首先求出外层大气温度,再利用静态模式求出各大气成分的数密度,对求出的数密度加以地磁、季节纬度项和半年项改正,并最终求出大气密度值,具体过程如下:

基本参数

令T时刻,地固系下,卫星的位置 r ⃗ s a t = ( r I , r J , r K ) T \vec{r}_{sat}=(r_I,r_J,r_K)^T r sat=(rI,rJ,rK)T,太阳的单位位置矢量 r ⃗ s u n = ( r x , r y , r z ) T \vec{r}_{sun}=(r_x,r_y,r_z)^T r sun=(rx,ry,rz)T

那么卫星的大地纬度(近似公式,没有迭代求解)为:
ϕ g d = t a n − 1 ( 1 ( 1 − f ) 2 [ r K r I 2 + r J 2 ] ) \phi_{gd}=tan^{-1}\left(\frac1{(1-f)^2}\left[\frac{r_K}{\sqrt{r^2_{I}+r^2_J}}\right]\right) ϕgd=tan1((1f)21[rI2+rJ2 rK])
太阳的纬度为:
δ s = t a n − 1 ( r z r x 2 + r y 2 ) \delta_s=tan^{-1}\left(\frac{r_z}{\sqrt{r^2_{x}+r^2_y}}\right) δs=tan1 rx2+ry2 rz
太阳的相对时角 L H A s LHA_s LHAs(此处单位为度)为:
L H A s = 180 ° π ( r x r J − r y r I ∣ r x r J − r y r I ∣ c o s − 1 ( r x r I + r y r J r x 2 + r y 2 r I 2 + r J 2 ) ) LHA_s=\frac{180°}{\pi}\left(\frac{r_xr_J-r_yr_I}{|r_xr_J-r_yr_I|}cos^{-1}\left(\frac{r_xr_I+r_yr_J}{\sqrt{r^2_x+r^2_y}\sqrt{r^2_I+r^2_J}}\right)\right) LHAs=π180° rxrJryrIrxrJryrIcos1 rx2+ry2 rI2+rJ2 rxrI+ryrJ
卫星的大地高度 h h h的计算,需要考虑地球椭球体,具体计算公式可以为精确的,也可以近似计算,此处不再给出,注意,在后面的计算中,大地高度 h h h的单位为km。

后面需要用到的其它常数为:
T 0 = 183 ° R p o l e = 6356.766 k m g 0 = 9.80665 R = 8.31432 A = 6.022045 × 1 0 23 ϵ = 23.439291 ° = 0.4090928 T_0=183° \\ R_{pole}=6356.766km\\ g_0 =9.80665 \\ R = 8.31432\\ A =6.022045×10^{23}\\ \epsilon=23.439291°=0.4090928 T0=183°Rpole=6356.766kmg0=9.80665R=8.31432A=6.022045×1023ϵ=23.439291°=0.4090928

大气温度

夜间全球外层温度, T c T_c Tc
T c ( K ) = 379 + 3.24 F ˉ 10.7 + 1.3 [ F 10.7 − F ˉ 10.7 ] T_c(K) = 379+3.24\bar{F}_{10.7}+1.3[F_{10.7}-\bar{F}_{10.7}] Tc(K)=379+3.24Fˉ10.7+1.3[F10.7Fˉ10.7]
由此得到未修正的外层大气温度 T u n c T_{unc} Tunc
T u n c = T c ( 1 + 0.3 [ s i n 2.2 ( θ ) + ( c o s 2.2 ( η ) − s i n 2.2 ( θ ) ) c o s 3 ( τ 2 ) ] ) T_{unc}=T_c\left(1+0.3\left[sin^{2.2}(\theta)+(cos^{2.2}(\eta)-sin^{2.2}(\theta))cos^3\left(\frac{\tau}{2}\right)\right]\right) Tunc=Tc(1+0.3[sin2.2(θ)+(cos2.2(η)sin2.2(θ))cos3(2τ)])
上式中:
η = ∣ ϕ g d − δ s ∣ 2 θ = ∣ ϕ g d + δ s ∣ 2 τ = L H A s − 37 ° + 6.0 ° s i n ( L H A s + 43.0 ° ) \eta=\frac{|\phi_{gd}-\delta_s|}{2}\\ \theta=\frac{|\phi_{gd}+\delta_s|}{2}\\ \tau=LHA_s-37°+6.0°sin(LHA_s+43.0°) η=2ϕgdδsθ=2ϕgd+δsτ=LHAs37°+6.0°sin(LHAs+43.0°)
注意,在计算 τ \tau τ时,三角函数为度,需要转换为弧度,另外得到 τ \tau τ后也需要转换为弧度,才能带入 T u n c T_{unc} Tunc中计算。

考虑地磁指数 k p k_p kp对温度的修正
Δ T c o r r = { 28.0 ° k p + 0.03 e k p , h ≥ 200 k m 14.0 ° k p + 0.02 e k p , h < 200 k m \Delta T_{corr}=\begin{cases} 28.0°k_p+0.03e^{k_p}, & h\geq200km \\ 14.0°k_p+0.02e^{k_p}, & h<200km \end{cases} ΔTcorr={28.0°kp+0.03ekp,14.0°kp+0.02ekp,h200kmh<200km
从而得到修正的外层温度 T c o r r T_{corr} Tcorr
T c o r r = T u n c + Δ T c o r r (1) T_{corr}=T_{unc}+\Delta T_{corr} \tag{1} Tcorr=Tunc+ΔTcorr(1)
临界点温度 T x T_x Tx为:
T x = 371.6678 ° + 0.0518806 T c o r r − 294.3505 ° e − 0.00216222 T c o r r (2) T_x=371.6678°+0.0518806T_{corr}-294.3505°e^{-0.00216222T_{corr}} \tag{2} Tx=371.6678°+0.0518806Tcorr294.3505°e0.00216222Tcorr(2)
T 0 = 183 ° T_0=183° T0=183°。则125km高度以下的温度为
T ( h ) 0 − 125 = T x + T x − T 0 3 5 4 ∑ n = 0 4 C n h n (3) T(h)_{0-125}=T_x+\frac{T_x-T_0}{35^4}\sum_{n=0}^4C_nh^n \tag{3} T(h)0125=Tx+354TxT0n=04Cnhn(3)
上式中的系数为:
C 0 = − 89284375.0 ; C 1 = 3542400.0 ; C 2 = − 52687.5 C 3 = 340.5 ; C 4 = − 0.8 C_0=-89284375.0; C_1=3542400.0; C_2=-52687.5\\ C_3=340.5;C_4=-0.8 C0=89284375.0;C1=3542400.0;C2=52687.5C3=340.5;C4=0.8
125km高度以上的温度为(Robert修正):
T ( h ) 125 − = T c o r r − ( T c o r r − T x ) e − ( T x − T 0 T c o r r − T x ) ( h − 125 35 ) ( l R p o l e + h ) (4) T(h)_{125-}=T_{corr}-(T_{corr}-T_x)e^{-\left(\frac{T_x-T_0}{T_{corr}-T_x}\right)\left(\frac{h-125}{35}\right)\left(\frac l{R_{pole}+h}\right)} \tag{4} T(h)125=Tcorr(TcorrTx)e(TcorrTxTxT0)(35h125)(Rpole+hl)(4)
上式中,系数 l l l为多项式的和
l = ∑ j = 0 4 l j T c o r r j (5) l=\sum_{j=0}^4l_jT^j_{corr} \tag{5} l=j=04ljTcorrj(5)
系数为:
l 0 = 0.1031445 × 1 0 5 l 1 = 0.2341230 × 1 0 1 l 2 = 0.1579202 × 1 0 − 2 l 3 = − 0.1252487 × 1 0 − 5 l 4 = 0.2462708 × 1 0 − 9 l_0=0.1031445×10^5\\ l_1=0.2341230×10^1\\ l_2=0.1579202×10^{-2}\\ l_3=-0.1252487×10^{-5}\\ l_4=0.2462708×10^{-9}\\ l0=0.1031445×105l1=0.2341230×101l2=0.1579202×102l3=0.1252487×105l4=0.2462708×109

大气密度

首先考虑几项对大气密度的修正。

地磁修正

高度200km以下( h < 200 k m ) h<200km) h<200km)时,考虑地磁的修正为:
( Δ l o g 10 ρ ) G = 0.012 k p + 1.2 × 1 0 − 5 e k p (\Delta log_{10}\rho)_G=0.012k_p+1.2×10^{-5}e^{k_p} (Δlog10ρ)G=0.012kp+1.2×105ekp

季节纬度变化

首先计算自1958年1月1日零时到当前时刻的累计天数(假设都使用TAI时间计算),并可得到累计的世纪数:
T 1958 = J D T − J D 1958 365.2422 T_{1958}=\frac{JD_T-JD_{1958}}{365.2422} T1958=365.2422JDTJD1958
J D 1958 JD_{1958} JD1958对应的儒略日为2436204.5。

则季节纬度变化的修正为:

( Δ l o g 10 ρ ) L T = 0.014 ( h − 90 ) s i n ( 2 π T 1958 + 1.72 ) s i n ( ϕ g d ) ∣ s i n ( ϕ g d ) ∣ e − 0.0013 ( h − 90 ) 2 (\Delta log_{10}\rho)_{LT}=0.014(h-90)sin(2\pi T_{1958}+1.72)sin(\phi_{gd})|sin(\phi_{gd})|e^{-0.0013(h-90)^2} (Δlog10ρ)LT=0.014(h90)sin(2πT1958+1.72)sin(ϕgd)sin(ϕgd)e0.0013(h90)2

半年变化


τ S A = T 1958 + 0.09544 ( [ 0.5 + 0.5 s i n ( 2 π T 1958 + 6.035 ) ] 1.65 − 0.5 ) \tau_{SA}=T_{1958}+0.09544\left([0.5+0.5sin(2\pi T_{1958}+6.035)]^{1.65}-0.5\right) τSA=T1958+0.09544([0.5+0.5sin(2πT1958+6.035)]1.650.5)
则半年变化的修正为:
( Δ l o g 10 ρ ) S A = ( 5.876 × 1 0 − 7 h 2.331 + 0.06328 ) e − 0.002868 h × ( 0.02835 + [ 0.3817 + 0.17829 s i n ( 2 π τ S A + 4.137 ) ] s i n ( 4 π τ S A + 4.259 ) ) (\Delta log_{10}\rho)_{SA}=(5.876×10^{-7}h^{2.331}+0.06328)e^{-0.002868h}\\ ×\left(0.02835+[0.3817+0.17829sin(2\pi \tau_{SA}+4.137) ]sin(4\pi \tau_{SA}+4.259)\right) (Δlog10ρ)SA=(5.876×107h2.331+0.06328)e0.002868h×(0.02835+[0.3817+0.17829sin(2πτSA+4.137)]sin(4πτSA+4.259))

密度公式

上述三项的修正总和为:
( Δ l o g 10 ρ ) c o r r = ( Δ l o g 10 ρ ) G + ( Δ l o g 10 ρ ) L T + ( Δ l o g 10 ρ ) S A (\Delta log_{10}\rho)_{corr}=(\Delta log_{10}\rho)_G+(\Delta log_{10}\rho)_{LT}+(\Delta log_{10}\rho)_{SA} (Δlog10ρ)corr=(Δlog10ρ)G+(Δlog10ρ)LT+(Δlog10ρ)SA
Robert(1971)注意到大气密度在90km-125km变化比较剧烈,因此他将大气密度分为三个段,不同高度对应的大气密度(单位: k g / m 3 kg/m^3 kg/m3)为:
ρ ( h ) = { ρ ( h ) 90 − 100 × 1000 × 1 0 ( Δ l o g 10 ρ ) c o r r , 90 k m < h ≤ 100 k m ρ ( h ) 100 − 125 × 1000 × 1 0 ( Δ l o g 10 ρ ) c o r r , 100 k m < h ≤ 125 k m ρ ( h ) 125 − × 1000 × 1 0 ( Δ l o g 10 ρ ) c o r r , 125 k m < h \rho (h)= \begin{cases} \rho (h)_{90-100}×1000×10^{(\Delta log_{10}\rho)_{corr}}, & 90km<h\leq100km\\ \rho (h)_{100-125}×1000×10^{(\Delta log_{10}\rho)_{corr}}, & 100km< h\leq125km\\ \rho (h)_{125-}×1000×10^{(\Delta log_{10}\rho)_{corr}}, & 125km<h \end{cases} ρ(h)= ρ(h)90100×1000×10(Δlog10ρ)corr,ρ(h)100125×1000×10(Δlog10ρ)corr,ρ(h)125×1000×10(Δlog10ρ)corr,90km<h100km100km<h125km125km<h
上式中,乘以1000是因为原来的公式中大气密度的单位为 g / c m 3 g/cm^3 g/cm3

由于卫星轨道一般不可能低于125km,所以本文只给出125km以上的大气密度,即上式中的 ρ ( h ) 125 − \rho (h)_{125-} ρ(h)125

125km以上密度: ρ ( h ) 125 − \rho (h)_{125-} ρ(h)125

大气密度是由6种气体分子的密度单独计算的,六种气体分子的相关参数见下表。
大气组成的分子密度
后面公式中,需要使用到上表中的参数 M i M_i Mi a i a_i ai

首先给出各分子在125km高度处的密度 ρ i ( 125 ) \rho_i(125) ρi(125)(注意,这里 i i i取值为1-5,氢气H分子暂未包含,后面单独计算)。
ρ i ( 125 ) = M i A 1 0 ∑ j = 0 6 δ i j T c o r r j (6) \rho_i(125)=\frac{M_i}A10^{\sum^6_{j=0} \delta_{ij}T^j_{corr}}\tag{6} ρi(125)=AMi10j=06δijTcorrj(6)
系数 δ i j \delta_{ij} δij由下表给出。
大气各分子密度的拟合系数
并令各分子的 γ i \gamma_i γi系数为:
γ i = M i g 0 R p o l e 2 R l T c o r r ( T c o r r − T x T x − T 0 ) ( 35 6481.766 ) \gamma_i=\frac{M_ig_0R^2_{pole}}{RlT_{corr}}\left(\frac{T_{corr}-T_x}{T_x-T_0}\right)\left(\frac{35}{6481.766}\right) γi=RlTcorrMig0Rpole2(TxT0TcorrTx)(6481.76635)
其中, l l l的取值参见公式(5),其余常数参见"基本参数"章节。

则最终的大气密度由6种气体分子的密度相加而成,其中前5种的和为:
ρ 1 − 5 ( h ) 125 − = ∑ i = 1 5 ρ i ( 125 ) ( T x T ( h ) ) 1 + a i + γ i ( T c o r r − T ( h ) T c o r r − T x ) γ i (7) \rho_{1-5} (h)_{125-}=\sum_{i=1}^5\rho_i(125)\left(\frac{T_x}{T(h)}\right)^{1+a_i +\gamma_i}\left(\frac{T_{corr}-T(h)}{T_{corr}-T_x}\right)^{\gamma_i} \tag{7} ρ15(h)125=i=15ρi(125)(T(h)Tx)1+ai+γi(TcorrTxTcorrT(h))γi(7)
上式中,对于第3种气体He的密度 ρ 3 ( 125 ) \rho_3(125) ρ3(125)有修正,修正公式如下:
( Δ l o g 10 ρ ) H e = 0.65 ∣ δ s ϵ ∣ [ s i n 3 ( π 4 − ϕ g d δ s 2 ∣ δ s ∣ ) − 0.35355 ] (\Delta log_{10}\rho)_{He}=0.65\left|\frac{\delta_s}{\epsilon}\right|\left[sin^3\left(\frac{\pi}{4}-\frac{\phi_{gd}\delta_s}{2|\delta_s|}\right)-0.35355\right] (Δlog10ρ)He=0.65 ϵδs [sin3(4π2∣δsϕgdδs)0.35355]
则修正后的 ρ 3 ( 125 ) \rho_3(125) ρ3(125)为:
ρ 3 ( 125 ) = ρ 3 ( 125 ) × 1 0 ( Δ l o g 10 ρ ) H e \rho_3(125)=\rho_3(125)×10^{(\Delta log_{10}\rho)_{He}} ρ3(125)=ρ3(125)×10(Δlog10ρ)He
第6种气体分子H密度 ρ 6 ( h ) \rho_6(h) ρ6(h)为(仅在500km以上高度才考虑):
ρ 6 ( h ) 500 − = ρ H ( 500 ) ( T 500 T ( h ) ) 1 + γ H ( T c o r r − T ( h ) T c o r r − T 500 ) γ H (7) \rho_6 (h)_{500-}=\rho_H(500)\left(\frac{T_{500}}{T(h)}\right)^{1+\gamma_H}\left(\frac{T_{corr}-T(h)}{T_{corr}-T_{500}}\right)^{\gamma_H} \tag{7} ρ6(h)500=ρH(500)(T(h)T500)1+γH(TcorrT500TcorrT(h))γH(7)
上式中, T 500 T_{500} T500表示在500km高度的温度,有(4)式给出,另外 ρ H ( 500 ) \rho_H(500) ρH(500)为500km高度的H分子的密度,由下式给出:
ρ H ( 500 ) = M H A 1 0 [ 73.13 − ( 39.4 − 5.5 l o g 10 T 500 ) ( l o g 10 T 500 ) ] \rho_H(500)=\frac{M_H}A10^{[73.13-(39.4-5.5log_{10}T_{500})(log_{10}T_{500})]} ρH(500)=AMH10[73.13(39.45.5log10T500)(log10T500)]
因此,最终6种气体分子的密度总和为:
ρ ( h ) 125 − = ρ 1 − 5 ( h ) 125 − + ρ 6 ( h ) 500 − (8) \rho (h)_{125-}=\rho_{1-5} (h)_{125-}+\rho_6 (h)_{500-} \tag{8} ρ(h)125=ρ15(h)125+ρ6(h)500(8)

因此,最终Jacchia-Robert的大气密度模型由上式给出(本文仅给出125km高度以上的公式),注意,当高度大于2500km以上时,可直接令大气密度为0,即2500km以上高度认为无大气。

算例

  • 时间:2017-01-01 00:00:00 UTC
  • 大地纬度:45 deg
  • 大地经度:0 deg
  • F 10.7 F10.7 F10.7: 100
  • F ˉ \bar{F} Fˉ: 100
  • K p Kp Kp: 4

则不同大地高度的大气密度如下:

大地高度(km)大气密度(kg/m^3)
125.11.5899e-8
3001.3061e-11
7001.3480e-14
15004.0058e-16

参考

  • 16
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
clc;clear all; img = imread('‪C:\Users\210\Desktop\123\mouse.jpg'); figure; imshow(img),title("原图像"); [ROW,COL] = size(img); img = double(img); new_img = zeros(ROW,COL); %新建画布 %定义robert算子 roberts_x = [1,0;0,-1]; roberts_y = [0,-1;1,0]; for i = 1:ROW - 1 for j = 1:COL - 1 funBox = img(i:i+1,j:j+1); G_x = roberts_x .* funBox; G_x = abs(sum(G_x(:))); G_y = roberts_y .* funBox; G_y = abs(sum(G_y(:))); roberts_xy = G_x * 0.5 + G_y * 0.5; new_img(i,j) = roberts_xy; end end figure(2); imshow(new_img/255),title("robert算子的图像"); % 定义laplace算子 laplace = [0,1,0;1,-4,1;0,1,0]; for i = 1:ROW - 2 for j = 1:COL - 2 funBox = img(i:i+2,j:j+2); G = laplace .* funBox; G = abs(sum(G(:))); new_img(i+1,j+1) = G; end end figure(3) imshow(new_img/255),title("laplace算子的图像"); %定义sobel算子 sobel_x = [-1,0,1;-2,0,2;-1,0,1]; sobel_y = [-1,-2,-1;0,0,0;1,2,1]; for i = 1:ROW - 2 for j = 1:COL - 2 funBox = img(i:i+2,j:j+2); G_x = sobel_x .* funBox; G_x = abs(sum(G_x(:))); G_y = sobel_y .* funBox; G_y = abs(sum(G_y(:))); sobelxy = G_x * 0.5 + G_y * 0.5; new_img(i+1,j+1) = sobelxy; end end figure(4); imshow(new_img/255),title("sobel的图像"); %定义Prewitt算子 sobel_x = [-1,0,1;-1,0,1;-1,0,1]; sobel_y = [-1,-1,-1;0,0,0;1,1,1]; for i = 1:ROW - 2 for j = 1:COL - 2 funBox = img(i:i+2,j:j+2); G_x = sobel_x .* funBox; G_x = abs(sum(G_x(:))); G_y = sobel_y .* funBox; G_y = abs(sum(G_y(:))); sobelxy = G_x * 0.5 + G_y * 0.5; new_img(i+1,j+1) = sobelxy; end end figure(5); imshow(new_img/255),title("Prewitt的图像");
最新发布
06-03

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值