GCD与LCM

目录

GCD与LCM

GCD

欧几里得

 更相减损术

辗转相除法与更相减损术的比较

GCD的二进制写法(stein算法)

LCM

分数的lcm


GCD与LCM

GCD

欧几里得

递归写法


形式1:
int gcd(int a,int b)
{
    if(b==0) return a;
    return gcd(b,a%b);
}
形式2:
int gcd(int x,int y){return y==0?x:GCD(x%y)}

非递归写法

int gcd(int a,int b)
{
    while(b)
    {
        a=a%b;
        swap(a,b);
    }
    return a;
}

 更相减损术

while(!(a%2) && !(b%2))
{
		a = a/2;
		b = b/2;
}
while(a != b)
{
		if(a>b){
			a = a-b;
		}else{
			b = b-a;
		}
}

辗转相除法与更相减损术的比较

(1)两者都是求最大公因数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

 (2)更相减损术本质是辗转相除法,辗转相除法效率比较高

(3)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到。

GCD的二进制写法(stein算法)

二进制写法先用移位的方式对两个数除2,直到两个数不同时为偶数。然后将剩下的偶数(如果有的话)做同样的操作,这样做的原因是如果u和v中u为偶数,v为奇数,则有gcd(u,v)=gcd(u/2,v)。到这时,两个数都是奇数,将两个数相减(因为gcd(u,v) = gcd(u-v,v)),得到的是偶数t,对t也移位直到t为奇数。每次将最大的数用t替换。

Stein算法只有整数的移位和加减法。下面就来说一下Stein算法的原理:

不加证明的给出:

  • 若a和b都是偶数,则记录下公约数2,然后都除2(即右移1位);
  • 若其中一个数是偶数,则偶数除2,因为此时2不可能是这两个数的公约数了
  • 若两个都是奇数,则a = |a-b|,b = min(a,b),因为若d是a和b的公约数,那么d也是|a-b|和min(a,b)的公约数。

递归式:

int SteinGCD(int a, int b) {
    if (a < b) { int t = a; a = b; b = t; }
    if (b == 0) return a;
    if ((a & 1) == 0 && (b & 1) == 0)
        return SteinGCD(a >> 1, b >> 1) << 1;
    else if ((a & 1) == 0 && (b & 1) != 0)
        return SteinGCD(a >> 1, b);
    else if ((a & 1) != 0 && (b & 1) == 0)
        return SteinGCD(a, b >> 1);
    else
        return SteinGCD(a - b, b);
}

非递归:

int SteinGCD(int a, int b) {
    int acc = 0;
    while ((a & 1) == 0 && (b & 1) == 0) {
        acc++;
        a >>= 1;
        b >>= 1;
    }
    while ((a & 1) == 0) a >>= 1;
    while ((b & 1) == 0) b >>= 1;
    if (a < b) { int t = a; a = b; b = t; }
    while ((a = (a - b) >> 1) != 0) {
        while ((a & 1) == 0) a >>= 1;
        if (a < b) { int t = a; a = b; b = t; }
    }
    return b << acc;
}

LCM

LCM(A,B)=A*B/GCD(A,B)

这样写法有可能会错,因为a * b可能因为太大  超出int  或者 超出 long long)

最好写成LCM(A,B)=A/GCD(A,B)*B;

分数的lcm

公式:lcm(S/a, S/b) = S/gcd(a, b)  例如:S = 9,a = 4,b = 6

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值