【xgboost】贝叶斯自动调参代码

本文分享了一段使用贝叶斯优化进行xgboost模型调参的代码,包括GBDTModel类的定义和模型训练示例。代码支持xgboost和lightgbm,可扩展至其他模型。
摘要由CSDN通过智能技术生成

工作中,很多场景下会用到xgboost模型,如风控、催收、营销、推荐等待。在用xgboost模型进行模型训练的时候,也经常用贝叶斯自动调参来搜索最优的参数。

现在把相关的代码贴出来,供大家参考。

目前是支持了xgboost和lightgbm模型,如果需要支持其他模型,感兴趣的朋友可以自己添加一下。

一、安装包

pip install bayesian-optimization

二、代码示例

GBDTModel类

我写了一个GBDTModel类,用来封装贝叶斯自动调参、模型训练、模型评估、模型保存、参数保存等代码,具体如下:

# -*-coding:utf-8 -*-
import os
import json
import pickle
import numpy as np
import xgboost as xgb
import lightgbm as lgb
from bayes_opt import BayesianOptimization
from sklearn.metrics import mean_absolute_error, roc_auc_score, accuracy_score, confusion_matrix


class GBDTModel(object):
    def __init__(self, output_dir, n_thread=10, n_jobs
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值