贝叶斯优化调参示例代码 (xgboost,lgbm)

本文提供XGBoost与LightGBM的参数调整教程,包括使用贝叶斯优化进行高效调参的方法,及官方推荐的调参指南。通过实际案例,帮助读者掌握如何优化模型参数以提升预测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先贴出教程链接。
Bayesian Optimization of XGBoost Parameters
https://www.kaggle.com/tilii7/bayesian-optimization-of-xgboost-parameters/notebook
衍生出来的:lgbm调参
https://www.kaggle.com/fabiendaniel/hyperparameter-tuning/notebook
再给出一个lgbm关于调参的建议:
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters-Tuning.rst
lgbm参数表:
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
参数比较少用gridsearch我觉得没问题。参数比较多,bayesian optimization绝对是主流。但是目前的话,针对lgbm我还没有做贝叶斯优化,感觉官网给的建议上修补好像也问题不大,之后当我发现了必须要做贝叶斯优化的时候我会回来把这些代码分析一遍的。
你们有需要做贝叶斯优化的,可以自行参考上面的链接代码,我觉得是足够的了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值