【CTC】CTC1D原理/代码/资料+2D CTC LOSS

1 1D CTC

1.1 简介

就不写了

1.2 核心思想

和大多数有监督学习一样,CTC 使用最大似然标准进行训练。

给定输入 x,输出 l 的条件概率为:
p(l|x)=∑π∈−1(l)p(π|x)

其中,B-1(l)表示了长度为 T 且示经过 B 结果为 l 字符串的集合。

CTC 假设每一步输出的概率是(相对于输入)条件独立的,因此有:
p ( π ∣ x ) = ∏ y π t t , ∀ π ∈ L ′ T p(\pi|x) = \prod y^t_{\pi_t}, \forall \pi \in L^{\prime T} p(πx)=yπtt,πLT

然而,直接按上式我们没有办理有效的计算似然值。下面用动态规划解决似然的计算及梯度计算, 涉及前向算法和后向算法。

1.3 图解原理

转载自[5]
如下图,为了更形象表示问题的搜索空间,用X轴表示时间序列, Y轴表示输出序列,并把输出序列做标准化处理,输出序列中间和头尾都加上blank,用l表示最终标签,l’表示扩展后的形式,则由2|l| + 1 = 2|l’|,比如:l=apple => l’=a_p_p_l_e
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
图中并不是所有的路径都是合法路径,所有的合法路径需要遵循一些约束,如下图:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
所以,依据以上约束规则,遍历所有映射为“apple”的合法路径,最终时序T=8,标签labeling=“apple”的全部路径如下图:
在这里插入图片描述

接下来,如何计算这些路径的概率总和?暴力遍历?分而治之?作者借鉴HMM的Forward-Backward算法思路,利用动态规划算法求解,可以将路径集合分为前向和后向两部分,如下图所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
通过动态规划求解出前向概率之后,可以用前向概率来计算CTC Loss函数,如下图:
在这里插入图片描述

说明:可将上面的α(t)理解成一个转移矩阵,走过的路径即为label,矩阵的值表示概率

根据 α 的定义,有如下递归关系:
α t ( s ) = { ( α t − 1 ( s ) + α t − 1 ( s − 1 ) ) y l s ′ t ,     i f   l s ′ = b   o r   l s − 2 ′ = l s ′ ( α t − 1 ( s ) + α t − 1 ( s − 1 ) + α t − 1 ( s − 2 ) ) y l s ′ t    o t h e r w i s e \alpha_t(s) = \{ \begin{array}{l} (\alpha_{t-1}(s)+\alpha_{t-1}(s-1)) y^t_{l^\prime_s},\ \ \ if\ l^\prime_s = b \ or\ l_{s-2}^\prime = l_s^{\prime} \\ (\alpha_{t-1}(s)+\alpha_{t-1}(s-1) + \alpha_{t-1}(s-2)) y^t_{l^\prime_s} \ \ otherwise \end{array} αt(s)={(αt1(s)+αt1(s1))ylst,   if ls=b or ls2=ls(αt1(s)+αt1(s1)+αt1(s2))ylst  otherwise

case 2

递归公式中 case 2 是一般的情形。如图所示,t 时刻字符为 s 为 blank 时,它可能由于两种情况扩展而来:1)重复上一字符,即上个字符也是 a,2)字符发生转换,即上个字符是非 a 的字符。第二种情况又分为两种情形,2.1)上一字符是 blank;2.2)a 由非 blank 字符直接跳转而来() 操作中, blank 最终会被去掉,因此 blank 并不是必须的)。
在这里插入图片描述

case 1

递归公式 case 1 是特殊的情形。
如图所示,t 时刻字符为 s 为 blank 时,它只能由于两种情况扩展而来:1)重复上一字符,即上个字符也是 blank,2)字符发生转换,即上个字符是非 blank 字符。t 时刻字符为 s 为非 blank 时,类似于 case 2,但是这时两个相同字符之间的 blank 不能省略(否则无法区分”aa”和”a”),因此,也只有两种跳转情况。
在这里插入图片描述

1.4 demo code

必须理解。有相应的注释。主要思路就是:

  • 先求当前步的所有可能转移概率的和
  • 转移概率和×label的预测概率
import numpy as np

np.random.seed(1111)

T, V = 12, 5
m, n = 6, V

x = np.random.random([T, m])  # T x m
w = np.random.random([m, n])  # weights, m x n

def softmax(logits):
    max_value = np.max(logits, axis=1, keepdims=True)
    exp = np.exp(logits - max_value)
    exp_sum = np.sum(exp, axis=1, keepdims=True)
    dist = exp / exp_sum
    return dist

def toy_nw(x):
    y = np.matmul(x, w)  # T x n 
    y = softmax(y)
    return y

y = toy_nw(x)
print(y)
print(y.sum(1, keepdims=True))


def forward(y, labels):
    T, V = y.shape
    L = len(labels)             # 步长
    alpha = np.zeros([T, L])    

    # init初始化第一步的概率
    alpha[0, 0] = y[0, labels[0]]   # 第一步的标签为blank时,pred的概率   // alpha是转移概率?
    alpha[0, 1] = y[0, labels[1]]   # 第一步的标签为第一个字符时,pred的概率

    for t in range(1, T):       # step,第n步的标签为s时
        for i in range(L):      # 标签长度
            s = labels[i]

            a = alpha[t - 1, i] 
            if i - 1 >= 0:                      # case1,有两种方式可以转移到当前位置
                a += alpha[t - 1, i - 1]
            if i - 2 >= 0 and s != 0 and s != labels[i - 2]:        # case 2,有三种方式可以转移到当前位置,转移概率×lable概率
                a += alpha[t - 1, i - 2]

            alpha[t, i] = a * y[t, s]

    return alpha

labels = [0, 3, 0, 3, 0, 4, 0]  # 0 for blank
alpha = forward(y, labels)
print(alpha)

p = alpha[-1, -1] + alpha[-1, -2]
print(p)

1.5 pytorch code

详细请看:ctc_loss.py

从上面可以知道,涉及到大量的概率值计算,这些概率值往往是很小的浮点数。而且概率值相乘后会越变越小,计算起来会损失精度,为了保持准确度,统一将这些概率值进行log处理,再参与运算。也就是说,在代码中处理的概率是对数域的值。所以网络输出的pred,会先进行torch.log操作。具体的计算请参考[2]

1.6 1D ctc 的局限性

在这里插入图片描述

  • 1d ctc在高度方向上必须压缩成一维,这样在处理弯曲文本的时候,会存在字符在宽度方向分割不好的情况。于是有了后续的2D CTC LOSS

2 2D CTC LOSS

  • 论文

  • 2d比1d多了个高度,还是采用转移矩阵的方式来理解。相对于1d,2d多了一个h方向,转移矩阵相当于一个三维矩阵。

下图其实不够具体,没有清晰的解释转移矩阵的效果
在这里插入图片描述

2.2 网络结构图

在这里插入图片描述

  • 网络有两个输出分支,1为batchch*w形状的在c维度的softmax表示每个位置,预测字符的概率。2为batch×1×h×w形状在h维度的softmax,表示在h方向选择的概率
  • 而h方向上下跳我们可以利用一个网络进行学习,上面第一个输出是wh各个位置的概率输出向量,而下面第二个输出是各个位置在h方向上跳动的概率,由于最后一列不用跳,因此输出是(w-1) h * h

每个位置在h方向跳动的概率和为1
在这里插入图片描述

  • 同样在计算2-D CTC loss时依然可以用到动态规划,只是在多了个h方向(将原来的某一个点(一个概率值),换成某一条竖线,变成h个概率值乘以跳转概率的和)
    在这里插入图片描述

2.3 局限性

  • 2D ctc loss还是采用序列(从左到右)的动态规划,所以其相对于1d ctc只是增加了一个h方向。能做弯曲文本的识别,但是还是单行。无法进行多行文本的识别。例如下图:
    在这里插入图片描述
    在这里插入图片描述

Reference

  1. 高大上的动图
  2. 对数域的计算log_add
  3. 【Learning Notes】CTC 原理及实现
  4. 2-D CTC Loss
  5. CTC Algorithm Explained Part 1:Training the Network(CTC算法详解之训练篇)
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值