flink watermark处理细节-StatusWatermarkValve代码分析

本文通过分析Flink中StatusWatermarkValve的实现,探讨了watermark处理细节,特别是在Kafka作为源,且存在多个分区与并行度不一致的情况下,watermark如何影响窗口触发计算的问题。核心在于理解inputStreamStatus方法中的watermark与StreamStatus处理逻辑。
摘要由CSDN通过智能技术生成

首先抛出一个问题:

kafka topic下有3个partition,下游consumer为flink job,flink job的并行度为4,如下图
在这里插入图片描述
那么window operator的watermark是否会一直很小,导致窗口迟迟不触发计算

理清这个问题需要看flink对watermark的处理,StatusWatermarkValve类嵌入了Watermark和StreamStatus两种元素怎么发送到下游到逻辑,inputStreamStatus方法包含了主要的处理逻辑

public void inputStreamStatus(StreamStatus streamStatus, int channel
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

左林右李02

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值