欢迎访问个人主页,目前访问量太低,百度搜不到的说。。。谢谢鼓励
读书笔记,并不打算翻译全文,打算将书中重要的知识点结合自己的理解将其分享,并在最后附上R语言相关函数应用,作为自己最近一段时间在机器学习方面学习总结。如果理解不正确,望指正。
前言
ISLR,全称为An Introduction to Statistical Learning with Applications in R,算是the Elements of Statistical Learning的基础版,里面公式推导并不多,主要是讲解统计学习中的一些常用方法,以及相关方法在R语言上的应用。ISLR官方并没用出习题的答案,不过已经有人做了一份,可以学习参考ISLR答案
第二章理解
第二章主要是简单的介绍了书的背景,主要强调在统计学习中并没有免费的午餐,没有一种方法适用于所有的问题,所以才要学习各种统计学习方法,目的针对实际问题找到适合的统计学习方法。
准确性与解释性
在统计学习中,我们的目的有的时候是为了观察某一变量的影响,这时候我们更需要方法的解释性,例如:利用线性模型,虽然一般不能准确目标数值,但很容易得知是正相关还是负相关。而预测股票变化趋势等问题,我们并不想知道市场各种因素对于股市是如何影响的,我们就像知道是涨还是跌,这时候更需要方法的准确性。
这是书中的一张图,通常来讲,随着方法自由度的增加,可解释性逐渐降低。
方差与偏差
E(y0−f