hdu 2462(数论:欧拉定理+快速幂取模优化+欧拉函数)

给定一个数,判断是否存在一个全由8组成的数为这个数的倍数

若存在则输出这个数的长度,否则输出0

写了好久实在想不出来,对着别人的题解才把题目做出来...

通过这个题学会了快速幂,但是代码中说的乘法转化还是看不懂...

百度了一下才知道这个题目是区预赛的题,看来自己和别人还有很多差距啊尴尬

------------------------------------------------------------------------------------------------------------------------------

原文:http://blog.csdn.net/ok_again/article/details/17077195

 首先,由题意可以得出,(10^x - 1)/ 9 * 8 = L * p(p是一个未知数,但必定是整数)。

           然后对上式进行移项处理,得:(10^x - 1) = 9 * L * p / 8。

           设m = 9 * L / gcd(L, 8),则有(10^x - 1) = m * p'。p’是必然存在的一个整数。

           然后问题就转化成为了 10^x = 1(mod m),观察此式,显然,m和10必定互质。

           于是根据欧拉定理,10^(Euler(m)) = 1(mod m) 。由于题目要求最小的解,解必然是Euler(m)的因子。

           需要注意的是,对于10^x,由于m太大,直接快速幂相乘的时候会超long long。。。。好bug,需要乘法转化一下。

代码如下:

#include <vector>
#include <cstdio>
#include <iostream>
#include <algorithm>
#define LL long long
#define MAXN 400010
using namespace std;
bool vis[MAXN];
vector<LL> hav;
vector<int> prime;

LL gcd(LL a, LL b) {
    return b==0 ? a : gcd(b, a%b);
}

void gen_primes() {
    for(int i=2; i<MAXN; ++i) {
        if(!vis[i]) {
            prime.push_back(i);
            if(i < 1111) {
                for(int j=i*i; j<MAXN; j+=i) {
                    vis[j] = true;
                }
            }
        }
    }
    return ;
}

LL euler_phi(LL n) {
    LL ans = n;
    for(int i=0; (LL)(prime[i]*prime[i])<=n; ++i) {
        if(n%prime[i] == 0) {
            ans = ans/prime[i]*(prime[i]-1);
            n /= prime[i];
            while(n%prime[i] == 0)
                n /= prime[i];
        }
    }
    if(n > 1) {
        ans = ans/n*(n-1);
    }
    return ans;
}

LL Mul(LL a, LL b, LL c) {
    LL ans = 0;
    while(b) {
        if(b & 1)
            ans = (ans+a)%c;
        a = a*2%c;
        b >>= 1;
    }
    return ans;
}

LL Pow(LL a, LL b, LL c) {
    LL ans = 1;
    while(b) {
        if(b & 1)
            ans = Mul(ans, a, c);
        a = Mul(a, a, c);
        b >>= 1;
    }
    return ans;
}

void get_hav(LL n) {
    hav.clear();
    for(int i=0; i<prime.size()&&n>1; ++i) {
        while(n%(LL)prime[i] == 0) {
            n /= prime[i];
            hav.push_back(prime[i]);
        }
    }
    if(n > 1)
        hav.push_back(n);
}

int main(void) {
    LL n, m, x, cas = 1;
    gen_primes();
    while(cin >> n && n) {
        m = 9*n/gcd(n, 8LL);
        if(gcd(m, 10LL) != 1) {
            cout << "Case " << cas++ << ": 0" << endl;
            continue;
        }
        x = euler_phi(m);
        get_hav(x);
        for(int i=0; i<hav.size(); ++i) {
            if(Pow(10LL, x/hav[i], m) == 1)
                x /= hav[i];
        }
        cout << "Case " << cas++ << ": " << x << endl;
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值