给定一个数,判断是否存在一个全由8组成的数为这个数的倍数
若存在则输出这个数的长度,否则输出0
写了好久实在想不出来,对着别人的题解才把题目做出来...
通过这个题学会了快速幂,但是代码中说的乘法转化还是看不懂...
百度了一下才知道这个题目是区预赛的题,看来自己和别人还有很多差距啊
------------------------------------------------------------------------------------------------------------------------------
原文:http://blog.csdn.net/ok_again/article/details/17077195
首先,由题意可以得出,(10^x - 1)/ 9 * 8 = L * p(p是一个未知数,但必定是整数)。
然后对上式进行移项处理,得:(10^x - 1) = 9 * L * p / 8。
设m = 9 * L / gcd(L, 8),则有(10^x - 1) = m * p'。p’是必然存在的一个整数。
然后问题就转化成为了 10^x = 1(mod m),观察此式,显然,m和10必定互质。
于是根据欧拉定理,10^(Euler(m)) = 1(mod m) 。由于题目要求最小的解,解必然是Euler(m)的因子。
需要注意的是,对于10^x,由于m太大,直接快速幂相乘的时候会超long long。。。。好bug,需要乘法转化一下。
代码如下:
#include <vector>
#include <cstdio>
#include <iostream>
#include <algorithm>
#define LL long long
#define MAXN 400010
using namespace std;
bool vis[MAXN];
vector<LL> hav;
vector<int> prime;
LL gcd(LL a, LL b) {
return b==0 ? a : gcd(b, a%b);
}
void gen_primes() {
for(int i=2; i<MAXN; ++i) {
if(!vis[i]) {
prime.push_back(i);
if(i < 1111) {
for(int j=i*i; j<MAXN; j+=i) {
vis[j] = true;
}
}
}
}
return ;
}
LL euler_phi(LL n) {
LL ans = n;
for(int i=0; (LL)(prime[i]*prime[i])<=n; ++i) {
if(n%prime[i] == 0) {
ans = ans/prime[i]*(prime[i]-1);
n /= prime[i];
while(n%prime[i] == 0)
n /= prime[i];
}
}
if(n > 1) {
ans = ans/n*(n-1);
}
return ans;
}
LL Mul(LL a, LL b, LL c) {
LL ans = 0;
while(b) {
if(b & 1)
ans = (ans+a)%c;
a = a*2%c;
b >>= 1;
}
return ans;
}
LL Pow(LL a, LL b, LL c) {
LL ans = 1;
while(b) {
if(b & 1)
ans = Mul(ans, a, c);
a = Mul(a, a, c);
b >>= 1;
}
return ans;
}
void get_hav(LL n) {
hav.clear();
for(int i=0; i<prime.size()&&n>1; ++i) {
while(n%(LL)prime[i] == 0) {
n /= prime[i];
hav.push_back(prime[i]);
}
}
if(n > 1)
hav.push_back(n);
}
int main(void) {
LL n, m, x, cas = 1;
gen_primes();
while(cin >> n && n) {
m = 9*n/gcd(n, 8LL);
if(gcd(m, 10LL) != 1) {
cout << "Case " << cas++ << ": 0" << endl;
continue;
}
x = euler_phi(m);
get_hav(x);
for(int i=0; i<hav.size(); ++i) {
if(Pow(10LL, x/hav[i], m) == 1)
x /= hav[i];
}
cout << "Case " << cas++ << ": " << x << endl;
}
return 0;
}