心电图的压缩传感

原文链接:http://blog.sciencenet.cn/blog-765184-625567.html

最近我们另外一片关于心电压缩传感的文章也被IEEE T-BME接收了。文章如下:


Compressed Sensing for Energy-Efficient Wireless Telemonitoring of Non-Invasive Fetal ECG via Block Sparse Bayesian Learning
by Zhilin Zhang, Tzyy-Ping Jung, Scott Makeig, Bhaskar D. Rao, accepted by IEEE Trans. Biomedical Engineering.   

文章下载地址:  http://arxiv.org/abs/1205.1287
Matlab代码下载地址: http://dsp.ucsd.edu/~zhilin/BSBL.html, or  https://sites.google.com/site/researchbyzhang/bsbl

关于心电图的压缩传感多说两句: 

Note that there are two groups of works on compressed sensing of ECG. One is the ECG compression (just like video compression, image compression, etc). Most works actually belong to this group. They generally use some MIT-BIH datasets, which are very clean (noise is removed). 

Another group is compressed sensing of ECG for energy-efficient wireless telemonitoring . There are only few works in this group. Our work belongs to this group. In this group the ECG data is always contaminated by noise and artifacts ('signal noise'). This is because the goal of telemonitoring is to allow people to walk and even exercise freely, and thus strong noise and artifacts caused by muscle and electrode movement are not evitable. Consequently, the raw ECG recordings are not sparse in the time domain and also not sparse in the transformed domains (e.g. the wavelet domain, the DCT domain). However, the strict constraint on energy consumption (and design issues, etc) of telemonitoring systems does not encourage filtering or other preprocessing before compression. Or, put in another way, if energy consumption and design issues are not problems, CS may have no advantages over traditional methods. Thus, CS algorithms have to recover non-sparse signals for this application. It turns out that the problem is very challenging. 

Our work not only solves this challenging problem, but also has some interesting mathematical meanings:

By linear algebra, there are infinite solutions to the underdetermined problem y=Ax. When the true solution x0 is sparse, using CS algorithms it is possible to find it. But when the true solution x0 is non-sparse, finding it is more challenging and new constraints/assumptions are called for. This work shows that when exploiting the unknown block structure and the intra-block correlation of x0, it is possible to find a solution x_est which is very close to the true solution x0. These findings raise new and interesting possibilities for signal compression as well as theoretical questions in the subject of sparse and non-sparse signal recovery from a small number of measurements y. 


文章的摘要如下: 

Fetal ECG (FECG) telemonitoring is an important branch in telemedicine. The design of a telemonitoring system via a wireless body-area network with low energy consumption for ambulatory use is highly desirable. As an emerging technique, compressed sensing (CS) shows great promise in compressing/reconstructing data with low energy consumption. However, due to some specific characteristics of raw FECG recordings such as non-sparsity and strong noise contamination, current CS algorithms generally fail in this application. 

This work proposes to use the block sparse Bayesian learning (BSBL) framework to compress/reconstruct non-sparse raw FECG recordings. Experimental results show that the framework can reconstruct the raw recordings with high quality. Especially, the reconstruction does not destroy the interdependence relation among the multichannel recordings. This ensures that the independent component analysis decomposition of the reconstructed recordings has high fidelity. Furthermore, the framework allows the use of a sparse binary sensing matrix with much fewer nonzero entries to compress recordings. Particularly, each column of the matrix can contain only two nonzero entries. This shows the framework, compared to other algorithms such as current CS algorithms and wavelet algorithms, can greatly reduce code execution in CPU in the data compression stage. 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值