Compressed Sensing
文章平均质量分 91
文fei哦
目前主要从事能源电力系统规划及优化运行、可再生能源、低碳电力技术、负荷预测、电力市场、碳达峰碳中和、新型电力系统、新能源+储能等方面的规划、研究与设计工作。业余喜欢研究和跟踪群智能优化算法、AI、大数据、机器视觉等领域的最新研究成果与发展趋势。
展开
-
压缩感知中的数学知识:稀疏、范数、符号arg min
转载(http://blog.csdn.net/jbb0523/article/details/40262629)本次说三个问题:1、稀疏2、范数3、符号arg min前面两个问题从矩阵理论的书籍中应该可以找到,最后一个问题从最优化类的书籍中应该可以找到。=========================以下为正文====================转载 2017-01-08 22:56:38 · 900 阅读 · 0 评论 -
采样与压缩感知
原文链接:http://blog.sciencenet.cn/blog-3214791-1009102.html光学基础知识大讲堂——第11期:采样与压缩感知日常生活中,我们通常会遇到这样的情况,当你看一个电风扇,刚开始你能分辨得出转动的方向,速度达到一定程度的时候你已经分辨不出来了,甚至会产生错觉,似乎扇叶在倒着转!图1 风扇转动动图(图片来源于网络)转载 2017-04-03 21:47:40 · 2535 阅读 · 1 评论 -
心电图的压缩传感
原文链接:http://blog.sciencenet.cn/blog-765184-625567.html最近我们另外一片关于心电压缩传感的文章也被IEEE T-BME接收了。文章如下:Compressed Sensing for Energy-Efficient Wireless Telemonitoring of Non-Invasive Fetal ECG via Block转载 2017-07-05 18:39:45 · 511 阅读 · 0 评论 -
MP算法和OMP算法及其思想
原文链接:http://blog.csdn.net/scucj/article/details/7467955主要介绍MP(Matching Pursuits)算法和OMP(Orthogonal Matching Pursuit)算法[1],这两个算法虽然在90年代初就提出来了,但作为经典的算法,国内文献(可能有我没有搜索到)都仅描述了算法步骤和简单的应用,并未对其进行详尽的分析,转载 2017-07-19 10:38:40 · 717 阅读 · 1 评论 -
压缩感知中的常见测量矩阵及其MATLAB实现代码
原文链接:http://blog.csdn.net/jbb0523/article/details/44700735题目:压缩感知的常见测量矩阵 下面首先给出十篇参考文献中有关测量矩阵的叙述,然后以一篇硕士论文中对七种常见测量矩阵的描述依据,给出了这七种常见测量矩阵的MATLAB实现代码,以为以后的研究提供一个参考,由于目前还没有一个简单有效的测量矩阵评价方法,因此这转载 2017-07-23 15:28:45 · 7560 阅读 · 0 评论 -
投影矩阵与最小二乘的背后联系
原文链接:http://blog.csdn.net/jbb0523/article/details/41477723在搜索投影矩阵时搜到了一篇博客:投影矩阵与最小二乘(一),作者一共写了三篇,写的很不错,从作者第一篇中开头提到“Strang教授”,搜索一下此人可以搜到麻省理工的开放课程线性代数,在暴风影音里可以搜到,这个公开课共35讲,其中第16讲是投影矩阵和最小二乘,估计投影矩阵与最转载 2017-07-23 22:43:13 · 785 阅读 · 0 评论 -
正交匹配追踪(OMP)其它改进算法
原文链接:http://blog.csdn.net/jbb0523/article/details/45693359题目:正交匹配追踪(OMP)其它改进算法下面介绍10篇文献中的OMP改进算法,首先给出这10篇参考文献:[1]杨成,冯巍,冯辉,杨涛,胡波.一种压缩采样中的稀疏度自适应子空间追踪算法[J]. 电子学报,2010,38(8):1914-1917.[2]高睿,转载 2017-07-23 22:44:51 · 1087 阅读 · 0 评论 -
MATLAB scripts for ADMM
原文链接:https://blog.csdn.net/u013055552/article/details/37910213---------------------------------------MATLAB scripts for alternating direction method of multipliersS. Boyd, N. Parikh, E. Chu, B. Peleat...转载 2018-05-17 15:43:36 · 4092 阅读 · 0 评论 -
稀疏表示step by step
原文链接:http://blog.sina.com.cn/s/blog_609b2d6f01016ab5.html稀疏表示step by step(1)声明:本人属于绝对的新手,刚刚接触“稀疏表示”这个领域。之所以写下以下的若干个连载,是鼓励自己不要急功近利,而要步步为赢!所以下文肯定有所纰漏,敬请指出,我们共同进步!踏入“稀疏表达”(Sparse Repres转载 2017-04-03 21:38:14 · 646 阅读 · 0 评论 -
压缩感知之最优化研究现状
原文链接:http://blog.sciencenet.cn/blog-497160-388963.htmlNyquist属于 local采样方式,其对应的信号重建算法是线性的; CS采用global的非自适应测量方式,从而大大减少数据采集量,然而其付出的代价是信号的重建算法的软件成本。因此,CS的最优化算法好坏直接影响到CS理论能否实用。 区别于Nyquist理论的线性感知转载 2017-04-03 21:44:23 · 3461 阅读 · 0 评论 -
压缩感知之测量矩阵研究现状
原文链接:http://blog.sciencenet.cn/blog-497160-388964.htmlCS的关键是测量矩阵的构造,它可由测量波形和采样方式决定。目前常采用的测量波形是i.i.d.高斯随机波形,i.i.d.贝努力分布的随机波形,正交函数系,等;常用的采样方式是均匀采样,随机采样,jitter采样,等。Tao测不准原理表明:当N是质数时,2*S个频域数据采转载 2017-04-03 21:42:05 · 1886 阅读 · 0 评论 -
压缩感知通俗解释
压缩感知从字面上看起来,好像是数据压缩的意思,而实则出于完全不同的考虑。经典的数据压缩技术,无论是音频压缩(例如 mp3),图像压缩(例如 jpeg),视频压缩(mpeg),还是一般的编码压缩(zip),都是从数据本身的特性出发,寻找并剔除数据中隐含的冗余度,从而达到压缩的目的。这样的压缩有两个特点:第一、它是发生在数据已经被完整采集到之后;第二、它本身需要复杂的算法来完成。相较而言,解码过程反而原创 2017-01-09 15:28:11 · 1555 阅读 · 0 评论 -
压缩感知学习笔记-2017.01.13
对压缩感知的简单理解:(1)CS的前提是信号的稀疏性,这包括信号本身在时域上是稀疏的或者信号经过一定的变换在相应的变换域(包括频域、小波域等)上是稀疏的。(2)通过y=Phi*x得到测量信号(y是M维,Phi是M*N维测量矩阵,x为N维原始信号),这样得到的测量信号y就可以传输或者存储了。(3)但CS的关键问题是通过一定的算法在压缩采样数据接收端由y恢复出原始的信号x,此重构问原创 2017-01-13 16:07:04 · 590 阅读 · 0 评论 -
[资料]L1算法代码大合集
原文链接:http://blog.163.com/gan_research/blog/static/1653481482010102810141278/SparseLab:http://sparselab.stanford.edu/Orthogonal Matching Pursuit (OMP): SolveOMPPrimal-Dual Basis Pursu转载 2017-01-14 11:43:52 · 1330 阅读 · 0 评论 -
压缩感知和稀疏信号处理课程笔记(陆吾生)
原文链接:http://blog.csdn.net/chulefei/article/details/51251916一、The Shannon-Nyquist Sampling Theorem问题:原始数据是连续函数,是否能用有限个采样百分之百重现原始数据?香农回答了这个问题:如果原始数据中最大频率为f,如果采样频率为2f,即每隔1/(2f)秒取一次样,则可完全恢转载 2017-01-14 13:44:21 · 9772 阅读 · 0 评论 -
压缩感知中的lp球:p范数最优化为什么总会导致一个稀疏的解的原因
原文链接:http://blog.csdn.net/jbb0523/article/details/40268943#题目: 压缩感知中的lp球:p范数最优化为什么总会导致一个稀疏的解的原因================问题的引出================压缩感知中为了解释0范数或1范数最优化为什么总会导致一个稀疏解的原因在解释时经常使用lp球与直线的交点去解释,下面转载 2017-01-10 11:36:57 · 655 阅读 · 0 评论 -
问题追踪
1、现有文献中信号X都是做为离散信号处理的,Y=ΦX完成压缩采样,如果是模拟信号怎么办呢?就是说还得要先用Shannon-Nyquist定理指导AD采样得到N维的信号X再压缩观测得到M维的Y意义何在呢?相当于说高成本的ADC已经使用,然后在接收端还得经过复杂的重建算法,好折腾的感觉,这和压缩感知的初衷就背离了吧(采样的同时完成压缩)?原创 2017-01-22 11:48:20 · 378 阅读 · 0 评论 -
压缩感知与Nquist抽样定理——模拟信息转换(AIC)学习总结
原文链接:http://blog.csdn.net/jbb0523/article/details/41595535一、引言压缩感知(CompressiveSensing, or Compressed Sensing)或译为压缩传感,或者称为压缩采样(Compressive sampling),以下统称压缩感知,简称CS。在压缩感知的有关文献中几乎都在说“压缩感知突破了传统的N转载 2017-01-22 11:47:26 · 974 阅读 · 0 评论 -
矩阵特征值分解与奇异值分解(SVD)含义解析及应用
原文链接:http://blog.csdn.net/xiahouzuoxin/article/details/41118351特征值与特征向量的几何意义矩阵的乘法是什么,别只告诉我只是“前一个矩阵的行乘以后一个矩阵的列”,还会一点的可能还会说“前一个矩阵的列数等于后一个矩阵的行数才能相乘”,然而,这里却会和你说——那都是表象。矩阵乘法真正的含义是变换,我们学转载 2017-01-22 18:41:42 · 12399 阅读 · 2 评论 -
ADMM优化算法
原文链接:http://www.cnblogs.com/breezedeus/p/3496819.html----------------------------------------------------------------------------------从等式约束的最小化问题说起: ...转载 2018-05-17 15:47:23 · 30846 阅读 · 0 评论