DRML(2016-CVPR)重现过程记录---(7)问题定位_2

 

1, 排除一部分可能性 

 

DRML作者除了他们算法DRML的prototxt以外,还提供了做实验用的AlexNet,ConvNet的prototxt文件。于是,我们直接用AlexNet.prototxt来训练(注意要打开调试开关),打印训练时的网络数据,发现训练基本趋势正常。我们猜测:作者的多标签输入层和loss层,以及我们的数据处理部分,应该基本没有问题。那么为什么采用DRML.prototxt会出错呢?

 

2,怎样避免网络训练过程中出现全0的情况

zjp打印出来的DRML网络训练过程的数据,有时候是conv层异常,有时候是batchnorm层异常,有时候relu层异常,有时候是fc层异常,明显的异常就是全部变成0。为了不让训练过程网络数据出现全0的情况,zjp参考了ResNet的网络结构,在DRML原本的batchnorm层和relu层之间增加了scale层,每一个卷积层后面增加了一个batchnorm、一个scale、一个relu,并且删除DRML原本的batchnorm中的学习率参数。

 

再进行训练时查看参数变化过程则发现不会再出现全0 的情况,模型是否合适还需要实验验证。

以下是更改后的DRML.prototxt

 

name: "KailirLCNNet"
layer {
  name: "data"
  type: "MultilabelImageData"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    crop_size: 170
    mean_file: "/home/hqp/DRML/face_plus/disfa_plus_2017_04_20_mean.binaryproto"
  }
  image_data_param {
    source: "/home/hqp/DRML/face_plus/train.txt"
    batch_size: 64
    multilabel_num: 12
  }
}
layer {
  name: "data"
  type: "MultilabelImageData"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    mirror: false
    crop_size: 170
    mean_file: "/home/hqp/DRML/face_plus/disfa_plus_2017_04_20_mean.binaryproto"
  }
  image_data_param {
    source: "/home/hqp/DRML/face_plus/val.txt"
    batch_size: 64
    multilabel_num: 12
  }
}

layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 32
    kernel_size: 11
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}



layer{
  name: "clipping"
  type: "Box"
  bottom: "conv1"
  top: "out1"
  top: "out2"
  top: "out3"
  top: "out4"
  top: "out5"
  top: "out6"
  top: "out7"
  top: "out8"
  top: "out9"
  top: "out10"
  top: "out11"
  top: "out12"
  top: "out13"
  top: "out14"
  top: "out15"
  top: "out16"
  top: "out17"
  top: "out18"
  top: "out19"
  top: "out20"
  top: "out21"
  top: "out22"
  top: "out23"
  top: "out24"
  top: "out25"
  top: "out26"
  top: "out27"
  top: "out28"
  top: "out29"
  top: "out30"
  top: "out31"
  top: "out32"
  top: "out33"
  top: "out34"
  top: "out35"
  top: "out36"
  top: "out37"
  top: "out38"
  top: "out39"
  top: "out40"
  top: "out41"
  top: "out42"
  top: "out43"
  top: "out44"
  top: "out45"
  top: "out46"
  top: "out47"
  top: "out48"
  top: "out49"
  top: "out50"
  top: "out51"
  top: "out52"
  top: "out53"
  top: "out54"
  top: "out55"
  top: "out56"
  top: "out57"
  top: "out58"
  top: "out59"
  top: "out60"
  top: "out61"
  top: "out62"
  top: "out63"
  top: "out64"
  box_param{
  width: 20
  height: 20

  xcoord: 0
  xcoord: 20
  xcoord: 40
  xcoord: 60
  xcoord: 80
  xcoord: 100
  xcoord: 120
  xcoord: 140
  
  
  xcoord: 0
  xcoord: 20
  xcoord: 40
  xcoord: 60
  xcoord: 80
  xcoord: 100
  xcoord: 120
  xcoord: 140


  xcoord: 0
  xcoord: 20
  xcoord: 40
  xcoord: 60
  xcoord: 80
  xcoord: 100
  xcoord: 120
  xcoord: 140


   xcoord: 0
  xcoord: 20
  xcoord: 40
  xcoord: 60
  xcoord: 80
  xcoord: 100
  xcoord: 120
  xcoord: 140
 

   xcoord: 0
  xcoord: 20
  xcoord: 40
  xcoord: 60
  xcoord: 80
  xcoord: 100
  xcoord: 120
  xcoord: 140

  
  xcoord: 0
  xcoord: 20
  xcoord: 40
  xcoord: 60
  xcoord: 80
  xcoord: 100
  xcoord: 120
  xcoord: 140
 

  xcoord: 0
  xcoord: 20
  xcoord: 40
  xcoord: 60
  xcoord: 80
  xcoord: 100
  xcoord: 120
  xcoord: 140


  xcoord: 0
  xcoord: 20
  xcoord: 40
  xcoord: 60
  xcoord: 80
  xcoord: 100
  xcoord: 120
  xcoord: 140
 


  ycoord: 0
  ycoord: 0
  ycoord: 0
  ycoord: 0
  ycoord: 0
  ycoord: 0
  ycoord: 0
  ycoord: 0

  ycoord: 20
  ycoord: 20
  ycoord: 20
  ycoord: 20
  ycoord: 20
  ycoord: 20
  ycoord: 20
  ycoord: 20

  ycoord: 40
  ycoord: 40
  ycoord: 40
  ycoord: 40
  ycoord: 40
  ycoord: 40
  ycoord: 40
  ycoord: 40

  ycoord: 60
  ycoord: 60
  ycoord: 60
  ycoord: 60
  ycoord: 60
  ycoord: 60
  ycoord: 60
  ycoord: 60

  ycoord: 80
  ycoord: 80
  ycoord: 80
  ycoord: 80
  ycoord: 80
  ycoord: 80
  ycoord: 80
  ycoord: 80

  ycoord: 100
  ycoord: 100
  ycoord: 100
  ycoord: 100
  ycoord: 100
  ycoord: 100
  ycoord: 100
  ycoord: 100

  ycoord: 120
  ycoord: 120
  ycoord: 120
  ycoord: 120
  ycoord: 120
  ycoord: 120
  ycoord: 120
  ycoord: 120

  ycoord: 140
  ycoord: 140
  ycoord: 140
  ycoord: 140
  ycoord: 140
  ycoord: 140
  ycoord: 140
  ycoord: 140

  }
}

layer{
type: "BatchNorm" 
name:"bn1_1"
bottom:"out1"
top: "bn1_1"
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_2"
bottom:"out2"
top: "bn1_2"
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_3"
bottom:"out3"
top: "bn1_3" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_4"
bottom:"out4"
top: "bn1_4" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_5"
bottom:"out5"
top: "bn1_5" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_6"
bottom:"out6"
top: "bn1_6" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_7"
bottom:"out7"
top: "bn1_7"
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_8"
bottom:"out8"
top: "bn1_8" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_9"
bottom:"out9"
top: "bn1_9" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_10"
bottom:"out10"
top: "bn1_10" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_11"
bottom:"out11"
top: "bn1_11" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_12"
bottom:"out12"
top: "bn1_12" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_13"
bottom:"out13"
top: "bn1_13" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_14"
bottom:"out14"
top: "bn1_14" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_15"
bottom:"out15"
top: "bn1_15" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_16"
bottom:"out16"
top: "bn1_16" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_17"
bottom:"out17"
top: "bn1_17" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_18"
bottom:"out18"
top: "bn1_18" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_19"
bottom:"out19"
top: "bn1_19" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_20"
bottom:"out20"
top: "bn1_20" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_21"
bottom:"out21"
top: "bn1_21" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_22"
bottom:"out22"
top: "bn1_22" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_23"
bottom:"out23"
top: "bn1_23" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_24"
bottom:"out24"
top: "bn1_24" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_25"
bottom:"out25"
top: "bn1_25" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_26"
bottom:"out26"
top: "bn1_26" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_27"
bottom:"out27"
top: "bn1_27" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_28"
bottom:"out28"
top: "bn1_28" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_29"
bottom:"out29"
top: "bn1_29" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_30"
bottom:"out30"
top: "bn1_30" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_31"
bottom:"out31"
top: "bn1_31" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_32"
bottom:"out32"
top: "bn1_32" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_33"
bottom:"out33"
top: "bn1_33" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_34"
bottom:"out34"
top: "bn1_34" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_35"
bottom:"out35"
top: "bn1_35" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_36"
bottom:"out36"
top: "bn1_36" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_37"
bottom:"out37"
top: "bn1_37" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_38"
bottom:"out38"
top: "bn1_38" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_39"
bottom:"out39"
top: "bn1_39" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_40"
bottom:"out40"
top: "bn1_40" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_41"
bottom:"out41"
top: "bn1_41" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_42"
bottom:"out42"
top: "bn1_42" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_43"
bottom:"out43"
top: "bn1_43" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_44"
bottom:"out44"
top: "bn1_44" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_45"
bottom:"out45"
top: "bn1_45" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_46"
bottom:"out46"
top: "bn1_46" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_47"
bottom:"out47"
top: "bn1_47" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_48"
bottom:"out48"
top: "bn1_48" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_49"
bottom:"out49"
top: "bn1_49" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_50"
bottom:"out50"
top: "bn1_50" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_51"
bottom:"out51"
top: "bn1_51" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_52"
bottom:"out52"
top: "bn1_52" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_53"
bottom:"out53"
top: "bn1_53" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_54"
bottom:"out54"
top: "bn1_54" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_55"
bottom:"out55"
top: "bn1_55" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_56"
bottom:"out56"
top: "bn1_56" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_57"
bottom:"out57"
top: "bn1_57" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_58"
bottom:"out58"
top: "bn1_58" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_59"
bottom:"out59"
top: "bn1_59" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_60"
bottom:"out60"
top: "bn1_60" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_61"
bottom:"out61"
top: "bn1_61" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_62"
bottom:"out62"
top: "bn1_62" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_63"
bottom:"out63"
top: "bn1_63" 
batch_norm_param {
    use_global_stats: false
 }
}


layer{
type: "BatchNorm" 
name:"bn1_64"
bottom:"out64"
top: "bn1_64" 
batch_norm_param {
    use_global_stats: false
 }
}

layer {
    bottom: "bn1_1"
    top: "bn1_1"
    name: "scale_out1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_2"
    top: "bn1_2"
    name: "scale_out2"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_3"
    top: "bn1_3"
    name: "scale_out3"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_4"
    top: "bn1_4"
    name: "scale_out4"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_5"
    top: "bn1_5"
    name: "scale_out5"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_6"
    top: "bn1_6"
    name: "scale_out6"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_7"
    top: "bn1_7"
    name: "scale_out7"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_8"
    top: "bn1_8"
    name: "scale_out8"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_9"
    top: "bn1_9"
    name: "scale_out9"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_10"
    top: "bn1_10"
    name: "scale_out10"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_11"
    top: "bn1_11"
    name: "scale_out11"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_12"
    top: "bn1_12"
    name: "scale_out12"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_13"
    top: "bn1_13"
    name: "scale_out13"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_14"
    top: "bn1_14"
    name: "scale_out14"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_15"
    top: "bn1_15"
    name: "scale_out15"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_16"
    top: "bn1_16"
    name: "scale_out16"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_17"
    top: "bn1_17"
    name: "scale_out17"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_18"
    top: "bn1_18"
    name: "scale_out18"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_19"
    top: "bn1_19"
    name: "scale_out19"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_20"
    top: "bn1_20"
    name: "scale_out20"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_21"
    top: "bn1_21"
    name: "scale_out21"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_22"
    top: "bn1_22"
    name: "scale_out22"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_23"
    top: "bn1_23"
    name: "scale_out23"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_24"
    top: "bn1_24"
    name: "scale_out24"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_25"
    top: "bn1_25"
    name: "scale_out25"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_26"
    top: "bn1_26"
    name: "scale_out26"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_27"
    top: "bn1_27"
    name: "scale_out27"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_28"
    top: "bn1_28"
    name: "scale_out28"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_29"
    top: "bn1_29"
    name: "scale_out29"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_30"
    top: "bn1_30"
    name: "scale_out30"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_31"
    top: "bn1_31"
    name: "scale_out31"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_32"
    top: "bn1_32"
    name: "scale_out32"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_33"
    top: "bn1_33"
    name: "scale_out33"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_34"
    top: "bn1_34"
    name: "scale_out34"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_35"
    top: "bn1_35"
    name: "scale_out35"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_36"
    top: "bn1_36"
    name: "scale_out36"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_37"
    top: "bn1_37"
    name: "scale_out37"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_38"
    top: "bn1_38"
    name: "scale_out38"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_39"
    top: "bn1_39"
    name: "scale_out39"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_40"
    top: "bn1_40"
    name: "scale_out40"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_41"
    top: "bn1_41"
    name: "scale_out41"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_42"
    top: "bn1_42"
    name: "scale_out42"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_43"
    top: "bn1_43"
    name: "scale_out43"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_44"
    top: "bn1_44"
    name: "scale_out44"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_45"
    top: "bn1_45"
    name: "scale_out45"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_46"
    top: "bn1_46"
    name: "scale_out46"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_47"
    top: "bn1_47"
    name: "scale_out47"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_48"
    top: "bn1_48"
    name: "scale_out48"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_49"
    top: "bn1_49"
    name: "scale_out49"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_50"
    top: "bn1_50"
    name: "scale_out50"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_51"
    top: "bn1_51"
    name: "scale_out51"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_52"
    top: "bn1_52"
    name: "scale_out52"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_53"
    top: "bn1_53"
    name: "scale_out53"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_54"
    top: "bn1_54"
    name: "scale_out54"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_55"
    top: "bn1_55"
    name: "scale_out55"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_56"
    top: "bn1_56"
    name: "scale_out56"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_57"
    top: "bn1_57"
    name: "scale_out57"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_58"
    top: "bn1_58"
    name: "scale_out58"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_59"
    top: "bn1_59"
    name: "scale_out59"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_60"
    top: "bn1_60"
    name: "scale_out60"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_61"
    top: "bn1_61"
    name: "scale_out61"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_62"
    top: "bn1_62"
    name: "scale_out62"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_63"
    top: "bn1_63"
    name: "scale_out63"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}
layer {
    bottom: "bn1_64"
    top: "bn1_64"
    name: "scale_out64"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer{
type: "ReLU"
name:"relu1_1"
bottom:"bn1_1"
top:"bn1_1"
}


layer{
type: "ReLU"
name:"relu1_2"
bottom:"bn1_2"
top:"bn1_2"
}


layer{
type: "ReLU"
name:"relu1_3"
bottom:"bn1_3"
top:"bn1_3"
}


layer{
type: "ReLU"
name:"relu1_4"
bottom:"bn1_4"
top:"bn1_4"
}


layer{
type: "ReLU"
name:"relu1_5"
bottom:"bn1_5"
top:"bn1_5"
}


layer{
type: "ReLU"
name:"relu1_6"
bottom:"bn1_6"
top:"bn1_6"
}


layer{
type: "ReLU"
name:"relu1_7"
bottom:"bn1_7"
top:"bn1_7"
}


layer{
type: "ReLU"
name:"relu1_8"
bottom:"bn1_8"
top:"bn1_8"
}


layer{
type: "ReLU"
name:"relu1_9"
bottom:"bn1_9"
top:"bn1_9"
}


layer{
type: "ReLU"
name:"relu1_10"
bottom:"bn1_10"
top:"bn1_10"
}


layer{
type: "ReLU"
name:"relu1_11"
bottom:"bn1_11"
top:"bn1_11"
}


layer{
type: "ReLU"
name:"relu1_12"
bottom:"bn1_12"
top:"bn1_12"
}


layer{
type: "ReLU"
name:"relu1_13"
bottom:"bn1_13"
top:"bn1_13"
}


layer{
type: "ReLU"
name:"relu1_14"
bottom:"bn1_14"
top:"bn1_14"
}


layer{
type: "ReLU"
name:"relu1_15"
bottom:"bn1_15"
top:"bn1_15"
}


layer{
type: "ReLU"
name:"relu1_16"
bottom:"bn1_16"
top:"bn1_16"
}


layer{
type: "ReLU"
name:"relu1_17"
bottom:"bn1_17"
top:"bn1_17"
}


layer{
type: "ReLU"
name:"relu1_18"
bottom:"bn1_18"
top:"bn1_18"
}


layer{
type: "ReLU"
name:"relu1_19"
bottom:"bn1_19"
top:"bn1_19"
}


layer{
type: "ReLU"
name:"relu1_20"
bottom:"bn1_20"
top:"bn1_20"
}


layer{
type: "ReLU"
name:"relu1_21"
bottom:"bn1_21"
top:"bn1_21"
}


layer{
type: "ReLU"
name:"relu1_22"
bottom:"bn1_22"
top:"bn1_22"
}


layer{
type: "ReLU"
name:"relu1_23"
bottom:"bn1_23"
top:"bn1_23"
}


layer{
type: "ReLU"
name:"relu1_24"
bottom:"bn1_24"
top:"bn1_24"
}


layer{
type: "ReLU"
name:"relu1_25"
bottom:"bn1_25"
top:"bn1_25"
}


layer{
type: "ReLU"
name:"relu1_26"
bottom:"bn1_26"
top:"bn1_26"
}


layer{
type: "ReLU"
name:"relu1_27"
bottom:"bn1_27"
top:"bn1_27"
}


layer{
type: "ReLU"
name:"relu1_28"
bottom:"bn1_28"
top:"bn1_28"
}


layer{
type: "ReLU"
name:"relu1_29"
bottom:"bn1_29"
top:"bn1_29"
}


layer{
type: "ReLU"
name:"relu1_30"
bottom:"bn1_30"
top:"bn1_30"
}


layer{
type: "ReLU"
name:"relu1_31"
bottom:"bn1_31"
top:"bn1_31"
}


layer{
type: "ReLU"
name:"relu1_32"
bottom:"bn1_32"
top:"bn1_32"
}


layer{
type: "ReLU"
name:"relu1_33"
bottom:"bn1_33"
top:"bn1_33"
}


layer{
type: "ReLU"
name:"relu1_34"
bottom:"bn1_34"
top:"bn1_34"
}


layer{
type: "ReLU"
name:"relu1_35"
bottom:"bn1_35"
top:"bn1_35"
}


layer{
type: "ReLU"
name:"relu1_36"
bottom:"bn1_36"
top:"bn1_36"
}


layer{
type: "ReLU"
name:"relu1_37"
bottom:"bn1_37"
top:"bn1_37"
}


layer{
type: "ReLU"
name:"relu1_38"
bottom:"bn1_38"
top:"bn1_38"
}


layer{
type: "ReLU"
name:"relu1_39"
bottom:"bn1_39"
top:"bn1_39"
}


layer{
type: "ReLU"
name:"relu1_40"
bottom:"bn1_40"
top:"bn1_40"
}


layer{
type: "ReLU"
name:"relu1_41"
bottom:"bn1_41"
top:"bn1_41"
}


layer{
type: "ReLU"
name:"relu1_42"
bottom:"bn1_42"
top:"bn1_42"
}


layer{
type: "ReLU"
name:"relu1_43"
bottom:"bn1_43"
top:"bn1_43"
}


layer{
type: "ReLU"
name:"relu1_44"
bottom:"bn1_44"
top:"bn1_44"
}


layer{
type: "ReLU"
name:"relu1_45"
bottom:"bn1_45"
top:"bn1_45"
}


layer{
type: "ReLU"
name:"relu1_46"
bottom:"bn1_46"
top:"bn1_46"
}


layer{
type: "ReLU"
name:"relu1_47"
bottom:"bn1_47"
top:"bn1_47"
}


layer{
type: "ReLU"
name:"relu1_48"
bottom:"bn1_48"
top:"bn1_48"
}


layer{
type: "ReLU"
name:"relu1_49"
bottom:"bn1_49"
top:"bn1_49"
}


layer{
type: "ReLU"
name:"relu1_50"
bottom:"bn1_50"
top:"bn1_50"
}


layer{
type: "ReLU"
name:"relu1_51"
bottom:"bn1_51"
top:"bn1_51"
}


layer{
type: "ReLU"
name:"relu1_52"
bottom:"bn1_52"
top:"bn1_52"
}


layer{
type: "ReLU"
name:"relu1_53"
bottom:"bn1_53"
top:"bn1_53"
}


layer{
type: "ReLU"
name:"relu1_54"
bottom:"bn1_54"
top:"bn1_54"
}


layer{
type: "ReLU"
name:"relu1_55"
bottom:"bn1_55"
top:"bn1_55"
}


layer{
type: "ReLU"
name:"relu1_56"
bottom:"bn1_56"
top:"bn1_56"
}


layer{
type: "ReLU"
name:"relu1_57"
bottom:"bn1_57"
top:"bn1_57"
}


layer{
type: "ReLU"
name:"relu1_58"
bottom:"bn1_58"
top:"bn1_58"
}


layer{
type: "ReLU"
name:"relu1_59"
bottom:"bn1_59"
top:"bn1_59"
}


layer{
type: "ReLU"
name:"relu1_60"
bottom:"bn1_60"
top:"bn1_60"
}


layer{
type: "ReLU"
name:"relu1_61"
bottom:"bn1_61"
top:"bn1_61"
}


layer{
type: "ReLU"
name:"relu1_62"
bottom:"bn1_62"
top:"bn1_62"
}


layer{
type: "ReLU"
name:"relu1_63"
bottom:"bn1_63"
top:"bn1_63"
}


layer{
type: "ReLU"
name:"relu1_64"
bottom:"bn1_64"
top:"bn1_64"
}



layer{
type: "Convolution"
name:"conv1_1"
bottom:"bn1_1"
top:"res1_1"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_2"
bottom:"bn1_2"
top:"res1_2"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_3"
bottom:"bn1_3"
top:"res1_3"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_4"
bottom:"bn1_4"
top:"res1_4"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_5"
bottom:"bn1_5"
top:"res1_5"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_6"
bottom:"bn1_6"
top:"res1_6"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_7"
bottom:"bn1_7"
top:"res1_7"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_8"
bottom:"bn1_8"
top:"res1_8"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_9"
bottom:"bn1_9"
top:"res1_9"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_10"
bottom:"bn1_10"
top:"res1_10"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_11"
bottom:"bn1_11"
top:"res1_11"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_12"
bottom:"bn1_12"
top:"res1_12"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_13"
bottom:"bn1_13"
top:"res1_13"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_14"
bottom:"bn1_14"
top:"res1_14"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_15"
bottom:"bn1_15"
top:"res1_15"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_16"
bottom:"bn1_16"
top:"res1_16"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_17"
bottom:"bn1_17"
top:"res1_17"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_18"
bottom:"bn1_18"
top:"res1_18"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_19"
bottom:"bn1_19"
top:"res1_19"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std: 0.01
  }
  bias_filler {
  type: "constant"
  value: 1
  }
 }
}


layer{
type: "Convolution"
name:"conv1_20"
bottom:"bn1_20"
top:"res1_20"
 param{
   lr_mult: 1
   decay_mult: 1
 }
 param{
   lr_mult: 2
   decay_mult: 0
 }
  convolution_param {
    num_output: 32
    kernel_size: 3
    pad: 1
  weight_filler {
  type: "gaussian"
  std:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值