Learning Guided Attention Masks for Facial Action Unit Recognition 阅读笔记

目标:减小人类和机器对于表情的感知差异
方法:提出一种引导注意力机制,以方便网络获取面部重要特征。从AU中学习注意力映射。
使用数据集: BP4D, MMSE and DISFA

结构:
如图1,使用4个密集块组成的Densenet,第二块的输出连接到掩蔽网络,该网络为给定的样本学习适当的AU引导掩码。学习到的掩码进一步添加到块2的输出,以注意力加强的特征表示。

使用Densenet进行特征提取:
Densenet属于使用剩余连接的一类网络。具体来说,就是densenet每一层都连接到同一块内的后续层。如果F_n表示在第n层应用的非线性函数集,则该层的输出x_n为:x_n=f_n([x_1,x_2,…,x_n-1])
该文中对Densenet-121结构进行改动。传统的Densenet由一系列密集块组成,每个块的末尾有一个最大池层来对特征进行下采样。最后,在四个密集块的末尾,构造了一个全局池层和分类层。
面部动作的一个关键特征是其间的内部AU相关性。AU很少单独发生,通常与其他AU同时发生。这种相关性使用完全连接的网络进行有效的建模。该文再最终分类层前添加一个带有1024个神经元的全连接层。

AU引导的空间注意力映射
一个注意力网络对图像/特征映射中每个与任务相关的点增加权重。
AU引导注意力:理想情况下,关注模型仅关注与特定AU最相关的区域。利用先验知识(不同AU影响的特定位置)来构造注意力稀疏网络。
在这里插入图片描述

将不同AU表示为面部关键点运动的集合。如下表:
在这里插入图片描述
使用像素平均方差损失:
在这里插入图片描述

端到端注意力学习:
掩码网络用于学习给定的一组输入特征的适当注意映射。该掩码不是强制注意力掩码,而是整合到中间层。第二个密集块在池层后的输出作为掩码网络的输出。网络中越接近输入层越倾向于检测基本轮廓和部分,越靠近分类层越倾向于AU预测。中间层如块2,在Densenet中捕获基于形状和外观的特征。由于引导注意掩码在很大程度上取决于图像中存在的AU,因此使用中间特征作为输入来学习注意掩码是合乎逻辑的。

实验结果:
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Attention-guided CNN for image denoising》是一种用于图像去噪的神经网络模型。它基于卷积神经网络(CNN)的基本架构,但引入了注意力机制来提高去噪的效果。 在传统的CNN中,输入图像经过一系列卷积和池化操作,通过多个卷积层和全连接层进行特征提取和分类。然而,在图像去噪任务中,图像中不同区域的噪声水平可能不同,因此传统的CNN在对整个图像进行处理时可能无法有效地去噪。 为了解决这个问题,注意力机制被引入到CNN中。注意力机制可以将网络的注意力集中在图像的不同区域,以便更有针对性地去噪。该模型通过引入注意力模块,在每个卷积层之后对特征图进行处理,以增强重要区域的特征表示。这种注意力机制能够在去噪任务中更好地保留图像的细节和边缘,提高去噪效果。 具体来说,注意力模块通过学习图像的空间注意力和通道注意力来选择性地加权特征图。空间注意力用于选择特征图中的重要区域,而通道注意力用于选择特征图中的重要特征通道。通过这种方式,网络可以更加自适应地选择图像中重要的特征表示,从而更好地去除噪声。 实验证明,使用注意力机制的CNN模型在图像去噪任务上具有更好的性能。它在不同的噪声水平和噪声类型下都能够有效地去噪,并且能够保持图像的细节和结构。因此,这个注意力引导的CNN模型在图像去噪任务中具有一定的应用前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值