1。二部图:
如果图G=(V,E)的顶点集何V可分为两个集合X,Y,且满足 X∪Y = V, X∩Y=Φ,则G称为二部图;图G的边集用E(G)表示,点集用V(G)表示。
2。匹配:
设M是E(G)的一个子集,如果M中任意两条边在G中均不邻接,则称M是G的一个匹配。M中的—条边的两个端点叫做在M是配对的。
3。饱和与非饱和:
若匹配M的某条边与顶点v关联,则称M饱和顶点v,并且称v是M-饱和的,否则称v是M-不饱和的。
4。交互道:
若M是二分图G=(V,E)的一个匹配。设从图G中的一个顶点到另一个顶点存在一条道路,这条道路是由属于M的边和不属于M的边交替出现组成的,则称这条道路为交互道。
5。可增广道路:
若一交互道的两端点为关于M非饱和顶点时,则称这条交互道是可增广道路。显然,一条边的两端点非饱和,则这条边也是可增广道路。
6。最大匹配:
如果M是一匹配,而不存在其它匹配M',使得|M'|>|M|,则称M是最大匹配。其中|M|表示匹配M的边数。
7。对称差:
A,B是两个集合,定义 A?B = (A∪B)\(A∩B)
则A?B称为A和B的对称差。
定理:M为G的最大匹配的充要条件是G中不存在可增广道路。
Hall定理:对于二部图G,存在一个匹配M,使得X的所有顶点关于M饱和的充要条件是:对于
X的任意一个子集A,和A邻接的点集为T(A),恒有: |T(A)| >= |A|
其中A\B表示集合A和集合B的商集,即属于A且不属于集合B的集合。
(2)定理(依据):
定理:M为G的最大匹配的充要条件是G中不存在可增广道路。
Hall定理:对于二部图G,存在一个匹配M,使得X的所有顶点关于M饱和的充要条件是:对于
X的任意一个子集A,和A邻接的点集为T(A),恒有: |T(A)| >= |A|
(3)匈牙利算法是基于Hall定理中充分性证明的思想,其——基本步骤:
1.任给初始匹配M;
2.若X已饱和则结束,否则进行第3步;
3.在X中找到一个非饱和顶点x0, 作V1 ← {x0}, V2 ← Φ;
4.若T(V1) = V2则因为无法匹配而停止,否则任选一点y ∈T(V1)\V2;
5.若y已饱和则转6,否则做一条从x0 →y的可增广道路P,M←M?E(P),转2;
6.由于y已饱和,所以M中有一条边(y,z),作 V1 ← V1 ∪{z}, V2 ← V2 ∪ {y}, 转4;
(4)基于最大匹配的其他问题求解:
1. 二分图的最小顶点覆盖(例hdu1150,poj3041)
在二分图中求最少的点,让每条边都至少和其中的一个点关联,这就是
二分图的“最小顶点覆盖”。
结论: 二分图的最小顶点覆盖数 = 二分图的最大匹配数
2. DAG图的最小路径覆盖 (例hdu1151)
用尽量少的不相交简单路径覆盖有向无环图(DAG)G的所有顶点,这就是DAG图的最小路径覆盖问题。
结论:DAG图的最小路径覆盖数= 节点数(n)- 最大匹配数(m)
3. 二分图的最大独立集(例hdu1068)
最大独立集是指求一个二分图中最大的一个点集,该点集内的点互不相连。
结论:二分图的最大独立集数= 节点数(n)- 最大匹配数(m)/2
二分图匹配总结
最新推荐文章于 2019-10-22 10:14:14 发布