图论-匹配和因子分解

匹配:

匹配M:M是E的一个,不包含环的子集,它的任意两条边在G中均不相邻。

M饱和的点v:匹配M的某条边,与顶点v关联。

M非饱和的点v:M中无边与顶点v关联。

完美匹配M:若G中的每个顶点,都是M饱和的点。

最大匹配M:在G中,找不到其它匹配的边数,大于M了。

ps:每个完美匹配,都是最大匹配。

M交错路:指图G的边,在E\M和M中交替出现,的路。

M可扩路:起点和终点,都是,非饱和的,M交错路。

ps:这个证明可等价于,M不是最大匹配,当且仅当G含有M可扩路。

充分性证明,M’为M可扩路中,除去M中的边,所组成的边集。在可扩路中,选取的M’内的边集互不相交,因此可算是个匹配。M’有m+1条边,M有m条边。

反之是,必要性证明,M和M’的对称差,意味着去除,M和M’之间公共边。因为M和M’都是匹配,里面的任意两条边均不邻接,因此H中的一个点,不可能同时关联M或M’中的两条边。M’的边多于M的边,H必定存在一个分支,M’的边多于M的边,在这个分支中,也必定存在,以M’中的边开始和结束的路P。

偶图的匹配与覆盖:

邻集N(S):与S的顶点,相邻的所有顶点的集合。

ps:必要性证明,S是X的子集,因此M也饱和S中的每一个顶点,则S中的每个顶点,也匹配于Y中的一个顶点,所以N(S)在原图G中,至少有S。

反之是,充分性证明,Z为包含所有,含有u点的M^*交错路的顶点集。u肯定是Z中唯一的非饱和点,不然就有M^*可扩路了,不然,在一条M^*交错路上,出现了两个非饱和点,以这两点为端点,截取出来的路,就为M^*可扩路了。

因为T是由Y和连接于u的交错路上的点的交集,所以T中的点所有都是M^*的饱和点。

如果没有交错路的限制,S会和Y中多个点相邻,因此有,。因为Z选取的是,所有连接于u的交错路上的点,所以T必定包含了所有N(S)上的点(如S的某个点到u的某条交错路中,加多一条到N(S)的边,又形成一条交错路࿰

  • 4
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值