总是感觉搞懂了画图,然而每次遇到复数值的时候都感觉思路不是很清晰,比如,我们想要做函数numpy.exp(1j * x)
的图像,我们可以看到此时当我们带入x
值进入后会得到复数值。如果我们直接用该复数值作图就会遇到警告信息提示,代码如下:
import numpy as np
import matplotlib.pyplot as plt
vertex = np.pi
x = np.linspace(-vertex, vertex, 100)
f = np.exp(1j * x)
plt.figure()
plt.plot(x, f)
plt.show()
"""
ComplexWarning: Casting complex values to real discards the imaginary part
return array(a, dtype, copy=False, order=order)
"""
我们可以看到提示信息说我们因为使用的是复数,所以自动丢弃了虚数部分,仅仅保留了实数部分,上述代码我们此时可以通过添加np.real()
函数来消除这个警告信息。从这里我们也可以得出,matplotlib模块的画图命令要求输入参数应该为实数。
import numpy as np
import matplotlib.pyplot as plt
vertex = np.pi
x = np.linspace(-vertex, vertex, 100)
f = np.exp(1j * x)
plt.figure()
plt.plot(x, np.real(f))
plt.show()
此时我们消除了警告提示信息,并且成功输出了如下图像。
不难看出这实际上是一个余弦函数,因为我们知道欧拉公式:
e
i
x
=
c
o
s
(
x
)
+
i
s
i
n
(
x
)
e^{ix}=cos(x) + isin(x)
eix=cos(x)+isin(x)
这里cos(x)
是实部,sin(x)
是虚部,因此当我们使用np.real(f)
时,实际上我们去掉了sin(x)
的部分,此时的e^{ix}
函数实际变为了cos(x)
。最终不难看出,我们实际得到的图像也是cos(x)
的图像。
那么怎样才能得到e^{ix}
函数的图像呢,答案是使用np.abs(f)
.代码如下:
import numpy as np
import matplotlib.pyplot as plt
vertex = np.pi
x = np.linspace(-vertex, vertex, 100)
f = np.exp(1j * x)
plt.figure()
plt.plot(x, np.abs(f))
plt.show()
可以看到我们最后获得的结果为一条恒为1
的直线,这很好理解,e^{ix}
图像实际上为一个单位圆,所以它本身的长度,即值恒等于1
。由此我们可以得到结论,画图时,如果图像输入参数值为复数,我们想要得到原本函数图像,应该使用np.abs()
函数对图像输入参数值进行处理而不是使用np.real()
函数。
注意: 对于光学上经常使用的强度绘图,我们知道强度是振幅的平方,因此一定要先取 real()
,再平方去获取最终的强度。
如果对复数还存在问题,可以继续查看这篇python复数基础(超链接,点击跳转)。
如果大家觉得有用,就点个赞让更多的人看到吧~