hdu 3486 Interviewe(RMQ)

Interviewe

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6157    Accepted Submission(s): 1451


Problem Description
YaoYao has a company and he wants to employ m people recently. Since his company is so famous, there are n people coming for the interview. However, YaoYao is so busy that he has no time to interview them by himself. So he decides to select exact m interviewers for this task.
YaoYao decides to make the interview as follows. First he queues the interviewees according to their coming order. Then he cuts the queue into m segments. The length of each segment is  , which means he ignores the rest interviewees (poor guys because they comes late). Then, each segment is assigned to an interviewer and the interviewer chooses the best one from them as the employee.
YaoYao’s idea seems to be wonderful, but he meets another problem. He values the ability of the ith arrived interviewee as a number from 0 to 1000. Of course, the better one is, the higher ability value one has. He wants his employees good enough, so the sum of the ability values of his employees must exceed his target k (exceed means strictly large than). On the other hand, he wants to employ as less people as possible because of the high salary nowadays. Could you help him to find the smallest m?
 

Input
The input consists of multiple cases.
In the first line of each case, there are two numbers n and k, indicating the number of the original people and the sum of the ability values of employees YaoYao wants to hire (n≤200000, k≤1000000000). In the second line, there are n numbers v1, v2, …, vn (each number is between 0 and 1000), indicating the ability value of each arrived interviewee respectively.
The input ends up with two negative numbers, which should not be processed as a case.
 

Output
For each test case, print only one number indicating the smallest m you can find. If you can’t find any, output -1 instead.
 

Sample Input
  
  
11 300 7 100 7 101 100 100 9 100 100 110 110 -1 -1
 

Sample Output
  
  
3
Hint
We need 3 interviewers to help YaoYao. The first one interviews people from 1 to 3, the second interviews people from 4 to 6, and the third interviews people from 7 to 9. And the people left will be ignored. And the total value you can get is 100+101+100=301>300.
 



给n个数分段 确保每段的人数相同 余下的人不参与

选出每段中能力值最高的 当这些能力值的和大于k时  符合要求

枚举分段的数量 针对不同的分段计算出每段最大能力值的和

这里有个优化 如果分为i段与分为i-1段的长度相同 则分为i段的和是分为i-1段的和加上多上的那段最大值


#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string.h>
#include <string>
#include <vector>
#include <queue>

#define MEM(a,x) memset(a,x,sizeof a)
#define eps 1e-8
#define MOD 10009
#define MAXN 200010
#define MAXM 100010
#define INF 99999999
#define ll __int64
#define bug cout<<"here"<<endl
#define fread freopen("ceshi.txt","r",stdin)
#define fwrite freopen("out.txt","w",stdout)

using namespace std;

int n;
int a[MAXN],dp[MAXN][30];

void RMQ_init()
{
    for(int i=0;i<n;i++)
        dp[i][0]=a[i];
    for(int j=1;(1<<j)<=n;j++)
        for(int i=0;i+(1<<j)-1<n;i++)
            dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}

int RMQ(int l,int r)
{
    int k=0;
    while((1<<(k+1))<=r-l+1) k++;
    return max(dp[l][k],dp[r-(1<<k)+1][k]);
}

int main()
{
//    fread;
    int k;
    while(scanf("%d%d",&n,&k)!=EOF)
    {
        if(n<0&&k<0) break;
        for(int i=0;i<n;i++)
            scanf("%d",&a[i]);
        RMQ_init();
        int ans=-1;
        int sum;
        for(int i=1;i<=n;i++)
        {
            int seg=n/i;
            int j,l;
            if(i>1&&seg==(n/(i-1)))
            {
                l=seg*(i-1);
                j=i;
            }
            else
            {
                l=0;
                j=1;
                sum=0;
            }
            for(;j<=i;j++)
            {
                sum+=RMQ(l,l+seg-1);
                l+=seg;
            }
            if(sum>k)
            {
                ans=i;
                break;
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值