poj 1067&&hdu 1527 取石子游戏

Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 32277 Accepted: 10691

Description

有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。

Input

输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。

Output

输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。

Sample Input

2 1
8 4
4 7

Sample Output

0
1
0
 
 
 
 

威佐夫博弈(Wythoff Game)

问题描述:有两堆物品,有以下两种操作:

1.从一堆中拿走任意多物品.

2.从两堆中拿走同样多的物品.

规定拿走最后一件物品者获胜,求先手必胜还是必败.

前几个必败点如下:(0,0),(1,2),(3,5),(4,7),(6,10),(8,13)……可以发现,对于第k个必败点(m(k),n(k))来说,m(k)是前面没有出现过的最小自然数,,n(k)=m(k)+k.一个必败点有如下性质:

1.所有自然数都会且仅会出现在一个必败点中;

证明:m(k)是前面没有出现过的最小自然数,自然与前k-1个必败点中的数字都不同;m(k)>m(k-1),否则违背m(k-1)的选择原则;n(k)=m(k)+k>m(k-1)+(k-1)=n(k-1)>m(k-1),因此n(k)比以往出现的任何数都大,即也没有出现过.又由于m(k)的选择原则,所有自然数都会出现在某个必败点中.性质1证毕.

2.规则允许的任意操作可将必败点移动到必胜点;

证明:以必败点(m(k),n(k))为例.若只改变两个数中的一个,由于性质1,则得到的点一定是必胜点;若同时增加两个数,由于不能改变两数之差,又有n(k)-m(k)=k,故得到的点也一定是必胜点.性质2证毕.

3.一定存在规则允许的某种操作可将必胜点移动到必败点;

证明:以某个必胜点(i,j)为例.因为所有自然数都会出现在某个必败点中,故要么i等于m(k),要么j等于n(k).若i=m(k),j>n(k),可从j中取走j-n(k)个石子到达必败点,若i=m(k),j<n(k),可从两堆同时拿走m(k)-m(j-m(k)),从而到达必败点(m(j-m(k)),m(j-m(k))+j-m(k));若i>m(k),j=n(k),可从i中取走i-m(k)个石子到达必败点;若i<m(k),j=n(k),需要再分两种情况,因为i一定也出现在某个必败点中,若i=m(l),则从j中拿走j-n(l),若i=n(l),则从j中拿走j-m(l),从而到达必败点(m(l),n(l)).性质3证毕.

判断一个点是不是必败点的公式与黄金分割有关,为:

m(k) = k * (1 + sqrt(5))/2

n(k) = m(k) + k

 

#include"stdio.h"
#include"math.h"
int main()
{
	int n,m,k,t;
	while(scanf("%d%d",&n,&m)!=-1)
	{
		k=n-m;
		if(k<0)
			k*=-1;
		t=(int)floor(k*(1+sqrt(5.0))/2);
		if(t==m||t==n)
			printf("0\n");
		else
			printf("1\n");
	}
	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值