
数字信号处理
文章平均质量分 72
记录数字信号处理相关知识
InnoLink_1024
一名FPGA数字逻辑设计和嵌入式系统开发的爱好者
展开
-
信号处理:傅里叶变换与离散傅里叶变换
(Discrete Fourier Transform,DFT)之间的关系在于它们处理的对象和应用场景不同,但本质上它们是相同的数学思想的两种实现形式。在工程中,FFT 是计算傅里叶变换的实际工具,尤其适合数字信号处理(DSP)和 FPGA 实现。快速傅里叶变换是 DFT 的一种高效实现算法,利用信号的对称性和周期性将计算复杂度从。(Fourier Transform,FT)和。原创 2024-12-17 10:08:20 · 991 阅读 · 0 评论 -
硬件设计:ADC芯片的分类
按照基本的架构来分,ADC(模数转换器)芯片有以下几个类别:2n−123−1728−1255。原创 2024-12-17 09:59:46 · 1231 阅读 · 0 评论 -
数字信号处理:如何设计数字滤波器?
设计数字滤波器是一个结合理论与实践的过程,需要考虑信号处理理论、数学计算、硬件实现和实际应用场景。通过不断的测试和优化,可以得到满足设计要求的数字滤波器。原创 2024-12-16 08:45:35 · 888 阅读 · 0 评论 -
滤波器:模拟滤波器和数字滤波器
总之,选择使用模拟滤波器还是数字滤波器取决于具体的应用需求、成本考虑、信号特性、处理速度要求等多个因素。两者各有优缺点,常常在实际应用中互补使用。原创 2024-12-15 17:39:54 · 617 阅读 · 0 评论 -
滤波器:3dB截止频率
3dB截止频率(也称为截止频率或-3dB频率)是指在频率响应曲线上,信号幅度下降到其最大值的0.707倍(即下降了约3分贝,简称dB)的那个频率点。:在3dB截止频率处,输出信号的幅度是输入信号幅度的约70.7%(即20*log(0.707)≈-3dB)。:3dB截止频率是电子设计中重要的参数,因为它标志着电路性能开始显著改变的点,对信号的处理(如滤波、放大等)有直接影响。了解3dB截止频率对于设计和分析电子电路非常重要,因为它帮助工程师确定电路在不同频率下的行为,从而优化电路的性能。原创 2024-12-15 17:31:56 · 2064 阅读 · 0 评论 -
数字信号处理:FIR滤波器
FIR(Finite Impulse Response,有限脉冲响应)滤波器是一种数字滤波器,其输出信号是输入信号的加权线性组合。通过对滤波器的系数设计,FIR滤波器可以实现精确的线性相位响应,这对于音频处理等需要保留信号波形的应用非常重要。FIR滤波器的冲激响应长度是有限的,这意味着在输入一个有限长度的信号后,滤波器的输出在有限时间后将趋于零。FIR滤波器没有反馈回路,因此它总是稳定的,不会发生由于累积误差导致的不稳定。FIR滤波器的结构简单,易于在硬件(如FPGA、ASIC)或软件中实现。原创 2024-12-12 20:28:37 · 2076 阅读 · 0 评论 -
数字信号处理:傅里叶变换
对于一个连续信号ft,其傅里叶变换定义为:对于一个连续信号ftFω∫−∞∞fte−jωtdtFω∫−∞∞fte−jωtdtft:时域信号f(t) :时域信号ft:时域信号Fω:频域信号(傅里叶变换结果)F(\omega) :频域信号(傅里叶变换结果)Fω:频域信号(傅里叶变换结果)ω:角频率,单位为弧度秒\omega :角频率,单位为弧度/秒ω:角频率,单位为弧度秒e−jωt。原创 2024-12-10 23:21:31 · 638 阅读 · 0 评论 -
关于FFT频谱泄露问题
1.什么是频谱泄露: 对于频率为 fs 的正弦序列,它的频谱应该只是在 fs 处有离散谱。但是,在利用 DFT 求它的频谱做了截断,结果使信号的频谱不只是在 fs 处有离散谱,而是在以 fs 为中心的频带范围内都有谱线出现,它们可以理解为是从 fs 频率上“泄露”出去的,这种现象称 为频谱“泄露"(结合上面的例子就更形象了)。 在实际问题中遇到的离散时间序列 x(n)通原创 2016-12-26 21:43:31 · 4279 阅读 · 0 评论