本文是观看B站视频教程【卡尔曼滤波器】4_误差协方差矩阵数学推导_卡尔曼滤波器的五个公式 所做的截图和笔记。
先列出前面几篇博客得到的公式:
下面是利用上图公式推导
P
k
−
\displaystyle\color{blue}P_k^-
Pk−的过程:
先写出接下来的计算会用到的东西:
上一次的真实值减去上一次的估计值:
由于
W
k
−
1
\displaystyle\color{blue}W_{k-1}
Wk−1是作用在
X
k
\displaystyle\color{blue}X_k
Xk上的,所以
e
k
−
1
\displaystyle\color{blue}e_{k-1}
ek−1和
W
k
−
1
\displaystyle\color{blue}W_{k-1}
Wk−1是相互独立的。所以他们的期望之间关系右:
E
(
A
B
)
=
E
(
A
)
∗
E
(
B
)
\displaystyle\color{blue}E(AB) = E(A)*E(B)
E(AB)=E(A)∗E(B)
又因为
e
k
−
1
\displaystyle\color{blue}e_{k-1}
ek−1和
W
k
−
1
\displaystyle\color{blue}W_{k-1}
Wk−1都是服从正态分布,所以期望为0,
E
(
e
k
−
1
)
=
0
\displaystyle\color{blue}E(e_{k-1})=0
E(ek−1)=0
E
(
W
k
−
1
)
=
0
\displaystyle\color{blue}E(W_{k-1})=0
E(Wk−1)=0
所以可以得到:
上面的Q
是过程噪声w
的协方差矩阵。
最终,我们就得到了卡尔曼滤波器的五个公式:
从(2)
式子看出,先验误差协方差矩阵
P
k
−
\displaystyle\color{blue}P_k^-
Pk−依赖上一次的误差协方差
P
k
−
1
\displaystyle\color{blue}P_{k-1}
Pk−1,所以我们需要在得到后验估计值
X
k
\displaystyle\color{blue}X_k
Xk以后,更新本次的
P
k
\displaystyle\color{blue}P_k
Pk(即公式5
),以便下一时刻计算(2)
式的先验误差协方差时可以使用它。
其中,公式5
的推导过程如下: