【数学和算法】初识卡尔曼滤波器(四)

本文详细介绍了卡尔曼滤波器中误差协方差矩阵Pk−displaystylecolor{blue}

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是观看B站视频教程【卡尔曼滤波器】4_误差协方差矩阵数学推导_卡尔曼滤波器的五个公式 所做的截图和笔记。


先列出前面几篇博客得到的公式:
在这里插入图片描述
下面是利用上图公式推导 P k − \displaystyle\color{blue}P_k^- Pk的过程:
在这里插入图片描述
先写出接下来的计算会用到的东西:
上一次的真实值减去上一次的估计值:
在这里插入图片描述
由于 W k − 1 \displaystyle\color{blue}W_{k-1} Wk1是作用在 X k \displaystyle\color{blue}X_k Xk上的,所以 e k − 1 \displaystyle\color{blue}e_{k-1} ek1 W k − 1 \displaystyle\color{blue}W_{k-1} Wk1是相互独立的。所以他们的期望之间关系右: E ( A B ) = E ( A ) ∗ E ( B ) \displaystyle\color{blue}E(AB) = E(A)*E(B) E(AB)=E(A)E(B)
又因为 e k − 1 \displaystyle\color{blue}e_{k-1} ek1 W k − 1 \displaystyle\color{blue}W_{k-1} Wk1都是服从正态分布,所以期望为0,
E ( e k − 1 ) = 0 \displaystyle\color{blue}E(e_{k-1})=0 E(ek1)=0 E ( W k − 1 ) = 0 \displaystyle\color{blue}E(W_{k-1})=0 E(Wk1)=0
在这里插入图片描述
所以可以得到:
在这里插入图片描述在这里插入图片描述
上面的Q是过程噪声w的协方差矩阵。
最终,我们就得到了卡尔曼滤波器的五个公式:
在这里插入图片描述
  从(2)式子看出,先验误差协方差矩阵 P k − \displaystyle\color{blue}P_k^- Pk依赖上一次的误差协方差 P k − 1 \displaystyle\color{blue}P_{k-1} Pk1,所以我们需要在得到后验估计值 X k \displaystyle\color{blue}X_k Xk以后,更新本次的 P k \displaystyle\color{blue}P_k Pk(即公式5),以便下一时刻计算(2)式的先验误差协方差时可以使用它。

其中,公式5的推导过程如下:
在这里插入图片描述

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELMSSA-ELM的具体实现代码,并通过波士顿房价数据集其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例性能对比图表,帮助读者更好地理解复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值