算法
文章平均质量分 88
_luna
我年纪还轻,阅历不深的时候,我父亲教导过我一句话,我至今还念念不忘。 “每逢你想要批评任何人的时候, ”他对我说,“你就记住,这个世界上所有的人,并不是个个都有过你拥有的那些优越条件。”
展开
-
2021-08-20
普通克里金 (OK)插值推导 前言1.1普通克里金推导1.1定义1.2假设条件1.3无偏约束条件1.4优化目标/代价函数J1.5代价函数的最优解1.6半方差函数1.7半方差模型1.8小结前言之前做毕设的时候看文献一知半解,现在找个时间补回来。1.1普通克里金推导1.1定义克里金插值公式形如:zo^=∑i=1nλizi\hat{z_o} = \sum^{n}_{i=1}{\lambda_iz_i}zo^=i=1∑nλizizo^\hat{z_o}zo^ 为预测点估计值;λi\la原创 2021-08-20 14:07:05 · 397 阅读 · 1 评论 -
导数应用(一):差分计算(导数)
导数应用(一):差分计算(导数)1.数学背景2.代码1.数学背景导数:dydx=y(xi)−y(xi−1)xi−xx−i\frac{dy}{dx} = \frac{y(x_i) - y(x_{i-1})}{x_i - x_{x-i}}dxdy=xi−xx−iy(xi)−y(xi−1)差分:ΔYΔX=Yi−Yi−1Xi−Xi−1\frac{\Delta Y}{\Delta X} =...原创 2020-04-07 21:18:53 · 5009 阅读 · 0 评论 -
快速相交检测:平面与包围盒
快速相交检测:平面与包围盒1.前言2.数学背景3.计算原理4.代码1.前言 在游戏等实时性要求高的三维程序中,相交检测是一项及其基础又重要的技术,大佬们相继提出各种检测技术。 当然大多数人的实现方式可能 (确信)是将包围盒的8个点分别带入平面检测,这将要做8组点积。 今天我来介绍其中一项比较快速的检测方法,在略去相交和内部的判断后可以直接降到四次点积,当然如果使用的是AABB则会变...原创 2020-04-06 22:01:02 · 1137 阅读 · 0 评论 -
欧拉角四元数与矩阵转换
欧拉角四元数与矩阵转换一、欧拉角到矩阵一、欧拉角到矩阵A rotates around the Z axis, B rotates around the Y axis, and C rotates around the X axis. The elements of the rotation matrix can be computed by using.R=[cosBcosAsinCsin...原创 2019-11-28 16:37:34 · 317 阅读 · 0 评论 -
OpenGL 视椎体剔除算法
视椎体剔除算法1. 前言2. 四叉/八叉树/六面体检测2.1 概述2.2 算法3. 球/圆锥检测3.1 概述3.2 算法1. 前言 时至今日,许多刚刚下海的3D引擎程序员仍不了解视锥剔除(Frustum Culling)的重要性和益处,这让我和我的小伙伴们感到很震♂惊.我在Flipcode...转载 2019-09-15 20:13:25 · 2755 阅读 · 1 评论 -
视锥剔除优化
视锥剔除优化基本相交测试. 只需要测试包围盒的两个角(这个几乎所有人都做了)平面连续测试. 根据上次测试的结果来优化用于测试的平面顺序八分体测试. 对于对称的视锥体可以减少一半的测试父子测试. 对于有父子关系的包围盒, 父在内则子在内, 父在外则子在外, 父相交则需要递归测试(四叉/八叉之类的肯定也做过了)变换连续测试. 根据移动和旋转的方向来优化测试. 如上一帧在外...转载 2019-08-25 00:11:13 · 953 阅读 · 0 评论 -
区间DP:Largest Sum of Averages
区间DP:Largest Sum of Averages区间DP区间DPleetcode 上面的一道题We partition a row of numbers A into at most K adjacent (non-empty) groups, then our score is the sum of the average of each group. What is the l...原创 2019-01-09 22:17:19 · 145 阅读 · 0 评论 -
点的旋转(4):四元数的乘法
点的旋转(4):四元数的乘法前言矢量积旋转C++代码前言同样的,跟前面一眼四元数的乘法也代表了旋转,四元数的积有多种定义,这里我们只讲被用在旋转操作的上积 —— 矢量积矢量积对于两个四元数q,p:q=w1+x1i+y1j+z1kq = w_1 + x_1i+y_1j+z_1kq=w1+x1i+y1j+z1kp=w2+x2i+y2j+z2kp = w_2 + x_2i+y_2j+...原创 2018-12-30 15:03:06 · 6217 阅读 · 2 评论 -
点的旋转(3):为什么没有三元数?
点的旋转(3):为什么没有三元数?前言自由度前言虚数使得实数有旋转的余地,那么为什么复数之后直接跳到了四元数?为什么没有三元数?现在让我们来探究一下自由度我们知道一个三维物体,有着三个自由度x,y,z该物体可以绕每个轴旋转那么三元数呢?我们首先给出一个三元数(a+bi+cj)(a+bi+cj)(a+bi+cj)我们知道复数代表一个旋转这个操作很简单,我们将x轴坐标乘上一个复数,便...原创 2018-12-30 01:00:57 · 7269 阅读 · 2 评论 -
点的旋转(2):四元数的推导
点的旋转(2):四元数的推导前言推导超复数如果交换两个乘子的顺序呢?它有什么性质?前言还记得上一节中我们怎么旋转一个二维向量的吗?我们将其放入一个复平面中,通过乘子来旋转其所在的坐标系来得到结果是的,跟2*3的例子一样,将该系下(1+0i)的位置变换至乘子r的位置,同时为了确保不会变形,我们限定乘子的模长为1(或者叫范数?随你啦),整个旋转看起来就像在圆的边上滑动。下面让我们来看超复数:...原创 2018-12-29 12:40:41 · 1117 阅读 · 1 评论 -
点的旋转(1):二维平面及复数
点的旋转(1):二维平面及复数前言加法乘法复平面旋转前言在阅读本文之前,你应该对笛卡尔坐标系和复数有一定了解,我们将从复数的角度来解释旋转。不过在这之前我们先来看看加法和乘法的另一种思想加法在二维平面,你一定学习过函数f(x) 的左右平移变换。你是不是第一时间想到了“左加右减”?假设我们使 f(x)向右移动a个单位,并将移动后的函数称为:f(t)则有f(x)=f(t+a)f(x)...原创 2018-12-29 10:51:37 · 3614 阅读 · 0 评论