POJ3046 counting ants

题意:T种蚂蚁,共计A只,种内没有区别,问含有x只蚂蚁的子集有多少种(x∈[S,B])

题解:动态规划,dp[i][j]代表用前i种蚂蚁凑成j只蚂蚁的集合的方法数,由于T*A太大,用滚动数组实现,最后输出的是答案mod 1000000

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <algorithm>
#define SCAND(x) scanf("%d",&(x))
#define SCANS(x) scanf("%s",(x))
#define PRINTD(x) printf("%d",(x))
using namespace std;
const int INF=1<<30;
int num[1111];
int dp[2][111111];
const int MOD=1000000;
int main()
{
    #ifndef ONLINE_JUDGE
        freopen("H:/in.txt","r",stdin);
        //freopen("H:/out.txt","w",stdout);
    #endif
    int T,m,s,b;
    //cin>>T>>m>>s>>b;
    scanf("%d%d%d%d",&T,&m,&s,&b);
    int tmp;
    for(int i=0;i<m;i++)
    {
        scanf("%d",&tmp);
        num[tmp]++;
    }
    int sum=0;
    //dp[0][0]=1;
    for(int i=1;i<=T;i++)
    {
        int y=i&1;
        int x=y^1;
        //dp[y][1]=i;
        memcpy(dp[y],dp[x],sizeof(dp[x]));
        for(int j=0;j<=sum&&j<=b;j++)
            for(int k=1;k<=num[i];k++)
            {
                if(j==0)
                    dp[y][j+k]+=1;
                else
                {
                    dp[y][j+k]+=dp[x][j],dp[y][j+k]%=MOD;
                }
            }
        sum+=num[i];
    }
    int y=T&1;
    int ans=0;
    for(int i=s;i<=b;i++)
    {
        ans+=dp[y][i],ans%=MOD;
    }
    printf("%d\n",ans);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值