逻辑回归原理

逻辑回归原理

1. 从线性回归到逻辑回归

2. 二元逻辑回归的模型 

3. 二元逻辑回归的损失函数

4. 二元逻辑回归的损失函数的优化方法

5. 二元逻辑回归的正则化



      逻辑回归是一个分类算法,它可以处理二元分类以及多元分类。虽然它名字里面有“回归”两个字,却不是一个回归算法。那为什么有“回归”这个误导性的词呢?个人认为,虽然逻辑回归是分类模型,但是它的原理里面却残留着回归模型的影子,本文对逻辑回归原理做一个总结。

1. 从线性回归到逻辑回归

  我们知道,线性回归的模型是求出输出特征向量Y和输入样本矩阵X之间的线性关系系数θ,满足Y=θX。此时我们的Y是连续的,所以是回归模型。如果我们想要Y是离散的话,怎么办呢?一个可以想到的办法是,我们对于这个Y再做一次函数转换,变为g(Y)。如果我们令g(Y)的值在某个实数区间的时候是类别A,在另一个实数区间的时候是类别B,以此类推,就得到了一个分类模型。如果结果的类别只有两种,那么就是一个二元分类模型了。逻辑回归的出发点就是从这来的。下面我们开始引入二元逻辑回归。

2. 二元逻辑回归的模型 

     我们提到对线性回归的结果做一个在函数g上的转换,可以变化为逻辑回归。这个函数g在逻辑回归中我们一般取为sigmoid函数,形式如下:

               {\color{Red} }g(z) = 1/1 + e^{-z}

  它有一个非常好的性质,即当z趋于正无穷时,g(z)趋于1,而当z趋于负无穷时,g(z)趋于0,这非常适合于我们的分类概率模型。如果我们令g(z)中的z为:z=θx,这样就得到了二元逻辑回归模型的一般形式:

    h_{_{\theta }}(x) = 1/1+e^{-\theta x}

      理解了二元分类回归的模型,接着我们就要看模型的损失函数了,我们的目标是极小化损失函数来得到对应的模型系数θ。

3. 二元逻辑回归的损失函数

  回顾下线性回归的损失函数,由于线性回归是连续的,所以可以使用模型误差的的平方和来定义损失函数。但是逻辑回归不是连续的,自然线性回归损失函数定义的经验就用不上了。不过我们可以用最大似然法来推导出我们的损失函数。

  我们知道,按照第二节二元逻辑回归的定义,假设我们的样本输出是0或者1两类。那么我们有:

     P(y=1|x,\theta ) = h_{_{\theta }}(x))

  P(y=0|x,\theta ) = 1 - h_{\theta }(x)

  把这两个式子写成一个式子,就是:

        P(y|x,\theta ) = h_{\theta }(x)^{y}(1-h_{\theta }(x))^{ 1-y}

  其中y的取值只能是0或者1。

  得到了y的概率分布函数表达式,我们就可以用似然函数最大化来求解我们需要的模型系数θ。

  为了方便求解,这里我们用对数似然函数最大化,对数似然函数取反即为我们的损失函数J(θ)。其中:

  似然函数的代数表达式为:

  L(\theta )= \prod_{i=0}^mh_{\theta }(x^{(i)})^{y^{(i)}}}(1-h_{\theta} (x^{(i)}))^{1-y^{^{(i)}}}

  其中m为样本的个数。

  对似然函数对数化取反的表达式,即损失函数表达式为:

  J(\theta )=-lnL(\theta )

4. 二元逻辑回归的损失函数的优化方法

  对于二元逻辑回归的损失函数极小化,有比较多的方法,最常见的有梯度下降法,坐标轴下降法,等牛顿法等。由于代数法推导比较的繁琐,而且实践中,我们 一般不用操心优化方法,大部分机器学习库都内置了各种逻辑回归的优化方法,但了解至少一种优化方法还是有必要的。

5. 二元逻辑回归的正则化

  逻辑回归也会面临过拟合问题,所以我们也要考虑正则化。常见的有L1正则化和L2正则化。

  逻辑回归的L1正则化的损失函数表达式如下,相比普通的逻辑回归损失函数,增加了L1的范数做作为惩罚,超参数α 作为惩罚系数,调节惩罚项的大小。

  二元逻辑回归的L1正则化损失函数表达式如下:

  J(\theta ) = -lnL(\theta ) +\alpha ||\theta ||_{1 }

  其中||\theta ||_{1 }为θ的L1范数。

  逻辑回归的L1正则化损失函数的优化方法常用的有坐标轴下降法和最小角回归法。

 

       二元逻辑回归的L2正则化损失函数表达式如下:

    J(\theta ) = -lnL(\theta ) + 1/2 *||\theta ||_{2}^{2}

  其中||\theta ||_{2}为θ的L2范数。

  逻辑回归的L2正则化损失函数的优化方法和普通的逻辑回归类似。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值