算法笔记 KMP

本文介绍了KMP算法,一种用于字符串匹配的高效算法,旨在解决在主串中查找模式串出现位置的问题。KMP算法避免了暴力匹配时的回溯,通过构造next数组来获取模式串的最长相同前缀后缀长度,从而在失配时快速调整模式串的指针。文章详细讲解了KMP算法的原理,并给出了算法的代码实现。
摘要由CSDN通过智能技术生成

算法笔记 KMP

  • 什么是KMP算法

    KMP算法是D.E.Knuth、J.H.Morris和V.R.Pratt几乎同时发现的一种字符串匹配算法。他要解决的是如下问题:

    (模式串的匹配问题)在某个字符串S中,求字符串T出现的位置。其中字符串S叫做主串,字符串T叫做模式串。若字符串T在字符串S中出现,那么返回它第一次出现的位置。若没有出现,则返回-1。

    例如:

    主串S: ABCABCAB
    模式串T: ABC
    

    则模式串T在S中出现了2次,第一次出现的位置是0,即主串S中第一个A的位置。

  • 如何解决

    1.暴力法

    我们很容易能想到一种解决方法:令i, j是两个分别指向主串S和模式串T的指针(即数组下标)。

    第一步:令i,j初始化为0,即分别指向主串S和模式串T的开头。

    第二步:

    ​ 1°若S[i] == T[j],则将i和j分别自增1,为下一次比较做准备。

    ​ 2°若S[i] != T[j],那么匹配失败(称为失配),i指向一开始时i的下一位,j需要重置为0。

    第三步:循环第二步,若j == T.length(),说明找到了这个字符串,匹配成功,否则若i == S.length(),则说明找到主串S中的最后都没能匹配成功,即T在S中没有出现,返回-1。

    算法如图所示:
    1
    2
    在这里插入图片描述
    4
    5
    6
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    据此算法,我们可以得出如下代码:

    #include<bits/stdc++.h>
    using namespace std;
    int main(void){
         
    	string s, t;
    	cin >> s >> t;
    	int i = 0, j = 0;
    	int len1 = s.length(), len2 = t.length();
    	while(i < len1 && j < len2){
         
    		if(s[i] == t[j]){
         
    			i++, j++;
    		}
    		else{
         
    			i = i - j + 1;//j是指向当前模式串失配位置的指针,也就是主串和模式串匹配字符的个数
    			//所以i-j表示将i退回至起点,+1即将i指向一开始i的下一位
    			j = 0;//重置j为0 
    		}	
    	}
    	if(j == len2){
         
    		cout << i - j + 1 << endl;//输出在主串中模式串第一次出现的位置,i-j的含义和上面相同 
    		
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值