算法笔记 KMP
-
什么是KMP算法
KMP算法是D.E.Knuth、J.H.Morris和V.R.Pratt几乎同时发现的一种字符串匹配算法。他要解决的是如下问题:
(模式串的匹配问题)在某个字符串S中,求字符串T出现的位置。其中字符串S叫做主串,字符串T叫做模式串。若字符串T在字符串S中出现,那么返回它第一次出现的位置。若没有出现,则返回-1。
例如:
主串S: ABCABCAB 模式串T: ABC
则模式串T在S中出现了2次,第一次出现的位置是0,即主串S中第一个A的位置。
-
如何解决
1.暴力法
我们很容易能想到一种解决方法:令i, j是两个分别指向主串S和模式串T的指针(即数组下标)。
第一步:令i,j初始化为0,即分别指向主串S和模式串T的开头。
第二步:
1°若S[i] == T[j],则将i和j分别自增1,为下一次比较做准备。
2°若S[i] != T[j],那么匹配失败(称为失配),i指向一开始时i的下一位,j需要重置为0。
第三步:循环第二步,若j == T.length(),说明找到了这个字符串,匹配成功,否则若i == S.length(),则说明找到主串S中的最后都没能匹配成功,即T在S中没有出现,返回-1。
算法如图所示:
据此算法,我们可以得出如下代码:
#include<bits/stdc++.h> using namespace std; int main(void){ string s, t; cin >> s >> t; int i = 0, j = 0; int len1 = s.length(), len2 = t.length(); while(i < len1 && j < len2){ if(s[i] == t[j]){ i++, j++; } else{ i = i - j + 1;//j是指向当前模式串失配位置的指针,也就是主串和模式串匹配字符的个数 //所以i-j表示将i退回至起点,+1即将i指向一开始i的下一位 j = 0;//重置j为0 } } if(j == len2){ cout << i - j + 1 << endl;//输出在主串中模式串第一次出现的位置,i-j的含义和上面相同