题目描述
魔法世界的科学家分形宇宙论,即宇宙是一个基本微粒,构成宇宙的无数个微粒又会有其他的小宇宙。分形定义如下:
1 度的分形为:X
2 度的分形为:
X X X X X
如果 B(n-1) 表示 n-1 度的分形,则 n 度的分形递归定义如下:
B(n-1) B(n-1) B(n-1) B(n-1) B(n-1)
要求给定分形的度,输出相应的分形图。
- 输入描述
多组输入,每组输入一个正整数 n
- 输出描述
对应于每组数,输出相应的分形图,并用一个 “-” 分隔
- 样例输入
1
2
- 样例输出
X
-
X X
X
X X
-
- 分析
对于度数为n的分型宇宙,它的大小为3n-1 * 3n-1
设(x,y)位置为某个n度分型宇宙左上角开始的位置,则对n+1度的分型宇宙,有:
n-1度分形起始坐标 | 位置 |
---|---|
(x, y) | 左上角 |
(x, y+2*size) | 右上角 |
(x+size, y+size) | 中间 |
(x+2*size, y) | 左下角 |
(x+2size, y+2size) | 右下角 |
其中size = 3n-2
- Answer
#include<bits/stdc++.h>
using namespace std;
char maze[3000][3000];
void dfs(int n