模型压缩
NineDays66
email:547691062@qq.com
展开
-
FLOPs与模型推理速度关系
2020/04/22更新刚在相关问题回答里跟ResNest作者讨论的时候又发现一个学术论文与工业界需求偏差的地方。好多使用attention的网络,比如x=x*sigmoid(x),实际上需要把tensor拷贝一次,这其实增大了显存占用,而显存占用是影响工业界实际应用的。因为工业界考虑的不是FLOPs,甚至也不是单纯的inference time,考虑的是把一块儿GPU打满情况下的QPS(...原创 2020-04-27 13:54:04 · 5933 阅读 · 5 评论 -
EfficientNet论文解读
https://zhuanlan.zhihu.com/p/70369784https://zhuanlan.zhihu.com/p/70369784https://zhuanlan.zhihu.com/p/70369784论文链接:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks代...原创 2019-11-26 16:37:48 · 829 阅读 · 0 评论 -
EfficientNet google 机器自学习出的优秀框架
简介该论文提出了一种新的模型缩放方法,它使用一个简单而高效的复合系数来以更结构化的方式放大 CNNs。 不像传统的方法那样任意缩放网络维度,如宽度,深度和分辨率,该论文的方法用一系列固定的尺度缩放系数来统一缩放网络维度。 通过使用这种新颖的缩放方法和 AutoML[5]技术,作者将这种模型称为 EfficientNets,它具有最高达10倍的效率(更小、更快)。区别第一处...原创 2019-10-30 15:07:45 · 855 阅读 · 0 评论 -
压缩神经网络
新的卷积计算方法这种是直接提出新的卷积计算方式,从而减少参数,达到压缩模型的效果,例如SqueezedNet,mobileNet1. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size代码地址:https://github.com/DeepScale/SqueezeN...转载 2018-11-15 11:06:45 · 936 阅读 · 0 评论 -
Relu6 作用
ReLU6首先说明一下ReLU6,卷积之后通常会接一个ReLU非线性激活,在Mobile v1里面使用ReLU6,ReLU6就是普通的ReLU但是限制最大输出值为6(对输出值做clip),这是为了在移动端设备float16的低精度的时候,也能有很好的数值分辨率,如果对ReLU的激活范围不加限制,输出范围为0到正无穷,如果激活值非常大,分布在一个很大的范围内,则低精度的float16无法很...原创 2019-07-09 17:48:24 · 44696 阅读 · 7 评论 -
让深度学习进入移动端,蘑菇街在移动端的深度学习优化实践
http://777n.com/keji/50566.htmlhttp://777n.com/keji/50566.htmlhttp://777n.com/keji/50566.html深度学习是机器学习中一种基于对数据进行表征学习的方法,与传统靠手工设计特征的机器学习算法不同,深度学习能根据不同任务自动学习数据的特征。目前深度学习在语音、图像、视频处理上已经取得了令人印象深刻的进...原创 2019-08-01 09:32:20 · 1051 阅读 · 0 评论