图像处理
NineDays66
email:547691062@qq.com
展开
-
静默活体检测-人脸活体识别
活体检测技术一般分为配合式活体检测和非配合式活体检测。配合式活体检测是最常见的活体检测方式,通过眨眼、张嘴、摇头、点头、甚至读出随机数字等配合式组合动作,使用人脸关键点定位和人脸追踪等技术,验证用户是否为真实活体本人操作。如,一些金融机构的交易支付,支付宝认证等都使用配合式活体检测技术。配合式活体检测出现较早,成本低,算法更简单,但用户体验差,使用复杂。非配合式活体检测/静默活体检测技术无需用户进行额外动作,可直接甄别纸张照片、屏幕成像、人脸面具等伪造人脸攻击。一般使用双摄像头做活体检测的,都是非配原创 2021-09-17 14:42:55 · 5818 阅读 · 0 评论 -
简单实现 单双层车牌颜色 识别
0.图像下采样,让后做图像色彩空间转换,转换到HSV色彩空间。1. 图像颜色判断,黄色有可能是双层车牌(这里不考虑其他类型的双层,只考虑常规双层车牌)2.原创 2021-06-02 11:03:29 · 2031 阅读 · 0 评论 -
光伏板异常识别算法
光伏板异常识别算法可以识别光伏板上面的污点,破损,歪倒等异常。支持 CPU / GPU,目前原始图像为4K高清图,CPU可以做到每秒识别2帧,GPU可以每秒30帧识别异常流程:1.检测所有光伏板的位置,确定一张图像所有的光伏板的位置分布。2.基于每个光伏板识别其是否存在异常。3.目前识别模型用的很小,可以支持边缘设备。识别效果如图所示:...原创 2021-04-02 11:26:52 · 4740 阅读 · 3 评论 -
基于深度学习车牌识别方案
支持车牌种类蓝色单层车牌 黄色单层车牌 绿色新能源车牌、民航车牌 黑色单层车牌 白色警牌、军牌、武警车牌 黄色双层车牌 绿色农用车牌 白色双层军牌原创 2021-04-02 11:15:57 · 1323 阅读 · 2 评论 -
OCR光学字符识别算法
应用场景身份认证使用身份证识别和人脸识别技术,自动识别录入用户身份信息,可应用于金融、保险、电商、O2O、直播等场景,对用户、商家、主播等进行实名身份认证,有效降低用户输入成本,控制业务风险最近基于OCR字符识别算法完成了身份证识别的应用,算法包括两块:字符检测+字符识别,算法已经移植到嵌入式设备,目前运行速度在200ms以内有兴趣的欢迎联系547691062@qq.com...原创 2020-12-11 10:41:53 · 133 阅读 · 0 评论 -
常用视频像素格式NV12、NV21、I420、YV12、YUYV
像素格式描述了像素数据存储所用的格式,定义了像素在内存中的编码方式。RGB和YUV为两种经常使用的像素格式。RGB格式一般较为熟悉,RGB图像具有三个通道R、G、B,分别对应红、绿、蓝三个分量,由三个分量的值决定颜色;通常,会给RGB图像加一个通道alpha,即透明度,于是共有四个分量共同控制颜色。YUV格式(YCrCb)是指将亮度参量Y和色度参量U/V分开表示的像素格式,主要用于优化彩色视频信号的传输。YUV像素格式来源于RGB像素格式,通过公式运算,YUV三分量可以还原出RGB,YU...原创 2020-09-23 11:47:23 · 3253 阅读 · 0 评论 -
python目标检测 训练数据预处理及加载代码
数据预处理def letterbox_image(img, inp_dim): '''resize image with unchanged aspect ratio using padding Parameters ---------- img : numpy.ndarray Image inp_dim: tuple(int) shape of the reszied image ...原创 2020-08-25 09:53:07 · 1304 阅读 · 0 评论 -
安防监控、智慧交通 视频结构化(车辆+行人)实现方案
目前视频结构化已经应用到安防监控中,主要是对视频中的人员、车辆目标进行结构化处理,能够提取出人员的年龄、性别、衣服颜色、是否戴眼镜等属性信息,车辆的车牌号码、车型、车辆颜色、挂件等属性信息。基于提取的属性信息可以进行人员、车辆的进一步比对分析,确定违法犯罪人员和违法车辆。在平安城市、智慧城市等的火热建设下,视频监控和视频应用的需求在不断增加,视频监控行业市场规模保持快速增长。庞大...原创 2020-04-03 16:37:20 · 6762 阅读 · 2 评论 -
图像亮度校正方法
人脸图像亮度校正import osimport cv2import mathimport numpy as npclass FaceEnhance(): """MobileFace enhance for dark or bright face. """ def __init__(self, **kwargs): super(MobileF...原创 2019-12-06 17:28:37 · 1713 阅读 · 0 评论 -
Procrustes analysis
概述在人脸相关应用中,获得的人脸图像常常形状各异,这时就需要对人脸形状进行归一化处理。人脸对齐就是将两个不同的形状进行归一化的过程,将一个形状尽可能地贴近另一个形状。值得注意的是,在英语文献中,Face Alignment和Facial Landmark Detection常常混用,在我的系列博客里面,Facial Landmark Detection指的是人脸特征点检测,而Face Al...原创 2018-06-19 14:42:32 · 8245 阅读 · 2 评论 -
opencv 实现YUV 图片差异对比
#include<opencv2/opencv.hpp>#include<opencv2/core/core.hpp> #include<opencv2/imgproc/imgproc.hpp>#include<opencv2/highgui/highgui.hpp>//#include<opencv2/features2d/featu...原创 2017-11-12 11:56:10 · 2196 阅读 · 0 评论 -
opencv寻找已知物体
源代码#include <opencv/cv.hpp>#include<opencv2/core.hpp>#include<opencv2/highgui.hpp>#include<opencv2/features2d.hpp>#include<opencv2/cudafeatures2d.hpp>#include&l...原创 2017-11-12 11:50:12 · 2405 阅读 · 0 评论 -
使用opencv进行车牌提取及识别
商业合作可联系:547691062@qq.com目录1车牌提取过程 1.1车辆图像获取 1.2车牌定位 1.3车牌字符分割 2车牌提取 2.1灰度化 2.2Candy边缘检测 2.3形态学(膨胀腐蚀)处理 2.4轮廓处理 2.5自适应二值化处理 3字符提取分割 3.1像素值判断 3.2确认字符位置 车牌提取过程一个典型的车辆牌照...原创 2017-11-12 11:29:16 · 94761 阅读 · 59 评论 -
使用opencv 进行图像去雾
背景近年来国内的雾霾天气逐渐由中东地区向全国蔓延。雾霾自2013年起开始成为人们对天气关注的关键词。雾霾是特定气候条件与人类活动相互作用的结果。高密度人口的经济及社会活动必然会排放大量细颗粒物(PM2.5),一旦排放超过大气循环能力和承载度,细颗粒物浓度将持续积聚,此时如果受静稳天气等影响,极易出现大范围的雾霾。 雾天时,弥漫在空中的雾气和尘埃模糊了人们的视线,使得景物的能见度大幅降低。...原创 2017-11-12 11:13:39 · 9957 阅读 · 2 评论 -
图形处理库-基于opencv
图形增强常用方法,记录包含:1.旋转 rotation ,3D旋转2.随机填充3. JPEG 压缩4.高斯噪声5.随机剪裁6.对比度调整7.各种图形模糊平滑处理#pragma once#ifndef _UTIL_IMG_#define _UTIL_IMG_#include <opencv2/opencv.hpp>#include <...原创 2018-12-19 19:41:09 · 328 阅读 · 0 评论 -
图像增强算法(直方图均衡化、拉普拉斯、Log、伽马变换)
一、图像增强算法原理 图像增强算法常见于对图像的亮度、对比度、饱和度、色调等进行调节,增加其清晰度,减少噪点等。图像增强往往经过多个算法的组合,完成上述功能,比如图像去燥等同于低通滤波器,增加清晰度则为高通滤波器,当然增强一副图像是为最后获取图像有用信息服务为主。一般的算法流程可为:图像去燥、增加清晰度(对比度)、灰度化或者获取图像边缘特征或者对图像进行卷积、二值化等,上述四个...原创 2019-08-12 12:33:43 · 10110 阅读 · 0 评论 -
CVPR 2019 行人检测新思路CSP
CVPR 2019 行人检测新思路:高级语义特征检测取得精度新突破今天跟大家分享一篇昨天新出的CVPR 2019论文《High-level Semantic Feature Detection:A New Perspective for Pedestrian Detection》,作者将行人检测问题转化为高级语义特征检测的问题,刷新了行人检测精度的新高度!而且作者称代码将开源。...原创 2019-08-22 14:37:40 · 2689 阅读 · 0 评论 -
【图像处理】透视变换 Perspective Transformation
透视变换(Perspective Transformation)是将图片投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。通用的变换公式为:u,v是原始图片左边,对应得到变换后的图片坐标x,y,其中。变换矩阵可以拆成4部分,表示线性变换,比如scaling,shearing和ratotion。用于平移,产生透视变换。所以可以理解...转载 2018-06-28 20:57:48 · 2960 阅读 · 0 评论 -
Optical Flow 理解
光流(optic flow)是什么呢?名字很专业,感觉很陌生,但本质上,我们是最熟悉不过的了。因为这种视觉现象我们每天都在经历。从本质上说,光流就是你在这个运动着的世界里感觉到的明显的视觉运动(呵呵,相对论,没有绝对的静止,也没有绝对的运动)。例如,当你坐在火车上,然后往窗外看。你可以看到树、地面、建筑等等,他们都在往后退。这个运动就是光流。而且,我们都会发现,他们的运动速度居然不一样?这就给...转载 2018-07-11 09:23:28 · 3222 阅读 · 0 评论 -
Camera Calibration 相机校准
Due to radial distortion, straight lines will appear curved. Its effect is more as we move away from the center of image. For example, one image is shown below, where two edges of a chess board are ma...原创 2018-07-04 11:50:21 · 2442 阅读 · 0 评论 -
活体检测-总结
Done:使用 整理的新数据重新训练 3second-15fps+CNN 网络,测试时发现,目前的模型 对attack检测较好,但可能会把真实人脸识别为 attack. 尝试新方法 Multi-Scale Frame + CNN ,使用一帧图片的多个尺度做为输入,可以有效的学习 人脸周围的纹理信息,目前效果来看,对已知的attack场景还行。关于目前论文实现情况的整理1...原创 2019-06-07 21:23:03 · 2486 阅读 · 0 评论 -
TensorFlow车牌识别完整版(含车牌数据集)
在之前发布的一篇博文《MNIST数据集实现车牌识别--初步演示版》中,我们演示了如何使用TensorFlow进行车牌识别,但是,当时采用的数据集是MNIST数字手写体,只能分类0-9共10个数字,无法分类省份简称和字母,局限性较大,无实际意义。经过图像定位分割处理,博主收集了相关省份简称和26个字母的图片数据集,结合前述博文中贴出的python+TensorFlow代码,实现了完整的车牌识别功...转载 2018-07-26 10:29:32 · 14191 阅读 · 11 评论 -
卡尔曼滤波(Kalman Filter)
卡尔曼滤波是什么卡尔曼滤波适用于估计一个动态系统的最优状态。即便是观测到的系统状态参数含有噪声,观测值不准确,卡尔曼滤波也能够完成对状态真实值的最优估计。网上大多数的教程讲到卡尔曼的数学公式推导,会让人很头疼,难以把握其中的主线和思想。所以我参考了国外一位学者的文章,讲述卡尔曼滤波的工作原理,然后编写了一个基于OpenCV的小程序给大家做一下说明。下面的这个视频请大家先直观地看看热闹吧~ 角度...原创 2018-08-06 15:55:39 · 3483 阅读 · 0 评论 -
无参考图像的清晰度评价方法
在无参考图像的质量评价中,图像的清晰度是衡量图像质量优劣的重要指标,它能够较好的与人的主观感受相对应,图像的清晰度不高表现出图像的模糊。本文针对无参考图像质量评价应用,对目前几种较为常用的、具有代表性清晰度算法进行讨论分析,为实际应用中选择清晰度算法提供依据。 (1)Brenner 梯度函数Brenner梯度函数是最简单的梯度评价函数,它只是简单的计算相邻两个像素灰度差的平方,该函数定义...转载 2018-09-18 17:05:29 · 4191 阅读 · 0 评论 -
灰度图和彩色图区分 代码方案
原理: 计算每个像素点的三通道差值,所有差值相加,小于 30 即为灰度图,大于30即为彩色图float caculate_residual_pixel(cv::Mat face_img) { //threadhold 建议 30 int channels = face_img.channels(); int rows = face_img.rows; int...原创 2018-10-11 16:33:20 · 603 阅读 · 0 评论 -
基于双目摄像头的传统图像处理方法实现活体检测
#include <iostream>#include <opencv2\opencv.hpp>#include <io.h>#include <mutex>#include <thread>#include <condition_variable>#include "util.hpp"#include "...原创 2019-06-07 21:16:31 · 3520 阅读 · 3 评论 -
用 Opencv 和 Python 对汪星人做模糊检测
首页 所有文章 观点与动态 基础知识 系列教程 实践项目 工具与框架 工具资源 Python小组- 导航条 -首页所有文章观点与动态基础知识系列教程实践项目工具与框架工具资源Python小组伯乐在线 > Python - 伯乐在线 > 所有文章 > 实践项目 > 用 Opencv 和 Python 对汪星人做模糊检测用 Opencv 和 Py...转载 2018-10-09 11:58:58 · 384 阅读 · 0 评论 -
OpenCV 图像清晰度评价(相机自动对焦)
相机的自动对焦要求相机根据拍摄环境和场景的变化,通过相机内部的微型驱动马达,自动调节相机镜头和CCD之间的距离,保证像平面正好投影到CCD的成像表面上。这时候物体的成像比较清晰,图像细节信息丰富。相机自动对焦的过程,其实就是对成像清晰度评价的过程,对焦不准确,拍摄出来的图像清晰度低,视觉效果模糊,如果是在工业检测测量领域,对焦不准导致的后果可能是致命的;对焦准确的图像清晰度较高,层次鲜明...原创 2018-10-09 12:01:44 · 733 阅读 · 0 评论 -
图像模糊的处理方法
1.对焦模糊均值滤波高斯滤波 2.运动模糊运动模糊的数学原理运动模糊,是在拍摄设备快门打开的时间内,物体在成像平面上的投影发生平移或旋转,使接受的影像彼此发生重叠。 为了便于用数学语言描述图像及其变换,现作如下规定:图像的左上角为坐标原点(0,0),图像的长度方向为x轴,宽度方向为y轴,整个图像落在第一象限。 假设无任何模糊和噪声的...原创 2018-10-16 16:22:05 · 6534 阅读 · 1 评论 -
傅里叶变换理解高通低通滤波
OpenCV 中的傅里叶变换 OpenCV 中相应的函数是 cv2.dft() 和 cv2.idft()。和前面输出的结果一样,但是是双通道的。第一个通道是结果的实数部分,第二个通道是结果的虚数部分。输入图像要首先转换成 np.float32 格式。我们来看看如何操作。 在前面的部分我们实现了一个 HPF(高通滤波),后面做 LPF(低通滤波)将高频部分去除。其实就是对图像进行模糊操作...转载 2018-10-19 09:18:38 · 7937 阅读 · 3 评论 -
色彩空间(RGB, HSV, LAB, YUV)
RGB颜色空间 RGB(red,green,blue)颜色空间最常用的用途就是显示器系统(计算机、电视机等都是采用RGB颜色空间来进行图像显示)。一般来说,电脑,电视机等是利用三个电子枪分别发射R分量,G分量,B分量的电子束,以此来激发屏幕上的RGB三种颜色的荧光粉,从而发出不同颜色、不同亮度的像素、进而组成了一幅图像;很明显,RGB颜色空间利用了物理学中的三原色叠加从而组成产生各种不...原创 2018-10-19 11:27:33 · 11957 阅读 · 0 评论 -
运动模糊恢复
维纳滤波—deconvwnr函数利用维纳滤波器来对图像模糊修复function image_restoration_deconvwnr() %Read image I = im2double(imread('lena.tif')); I=rgb2gray(I); figure,subplot(2,3,1),imshow(I); title('Origi...原创 2018-10-26 11:38:49 · 7064 阅读 · 4 评论 -
检测 图像中得直线
Radon 变换 介绍图像投影,就是说将图像在某一方向上做线性积分(或理解为累加求和)。如果将图像看成二维函数f(x, y),则其投影就是在特定方向上的线性积分,比如f(x, y)在垂直方向上的线性积分就是其在x轴上的投影;f(x, y)在水平方向上的线积分就是其在y轴上的投影。通过这些投影,可以获取图像在指定方向上的突出特性,这在图像模式识别等处理中可能会用到。 Radon变换...原创 2018-10-26 10:50:17 · 8244 阅读 · 0 评论 -
CUDFF 图像傅里叶变换
cudff 快速傅里叶变换利用cuda进行fft变换时,会有一些参数设置的规则,一下举例进行说明:float *h_Data; //"h_": host,表示CPU内存float *d_Data; //"d_":device,表示GPU内存fComplex *d_DataSpectrum, //fComplex:为float复数形式,x为实数,y为复数cufftHandle ff...原创 2018-08-17 15:23:49 · 2189 阅读 · 1 评论 -
opencv学习 之图像傅里叶变换dft
在学习信号与系统或通信原理等课程里面可能对傅里叶变换有了一定的了解。我们知道傅里叶变换是把一个信号从时域变换到其对应的频域进行分析。如果有小伙伴还对傅里叶变换处于很迷糊的状态,请戳这里,非常通俗易懂。而在图像处理中也有傅里叶分析的概念,我这里给出在其官方指导文件opencv_tutorials中给出的解释。 傅里叶变换可以将一幅图片分解为正弦和余弦两个分量,换而言之,他可以将一幅图像...转载 2018-08-17 10:49:21 · 2231 阅读 · 0 评论 -
Opencv图像识别从零到精通(36)----DFT离散傅里叶变换
傅里叶变换 的应用离散傅立叶变换的一个应用是决定图片中物体的几何方向.比如,在文字识别中首先要搞清楚文字是不是水平排列的? 看一些文字,你就会注意到文本行一般是水平的而字母则有些垂直分布。文本段的这两个主要方向也是可以从傅立叶变换之后的图像看出来。我们使用这个 水平文本图像 以及 旋转文本图像 来展示离散傅立叶变换的结果 。水平文本图像:旋转文本图像:观察这两张幅度图...转载 2018-07-11 11:11:11 · 1513 阅读 · 0 评论 -
深度学习用于图像压缩
CHALLENGE ON LEARNED IMAGE COMPRESSION 挑战赛由 Google、Twitter、Amazon 等公司联合赞助,是第一个由计算机视觉领域的会议发起的图像压缩挑战赛,旨在将神经网络、深度学习等一些新的方式引入到图像压缩领域。据 CVPR 大会官方介绍,此次挑战赛分别从 PSNR 和主观评价两个方面去评估参赛团队的表现。不久之前,CLIC 挑战赛比赛结果公布:在...转载 2018-06-24 13:35:53 · 8272 阅读 · 7 评论