【概述】
KMP 算法用于解决长文本的单模板匹配问题,字典树用于解决单个单词(短文本)多模板匹配问题,而 AC 自动机用于解决的是长文本的多模板匹配问题,其是以 trie 树的结构为基础,结合 KMP 的思想建立的。
长文本的多模式匹配就是给出多个模式串 P1,P2,P3...,Pm,求出所有这些模式串在连续文本 T1....n 中的所有可能出现的位置、出现的个数、出现的单词等等。
例如:给出模式集合:{"nihao","hao","hs","hsr"} 与指定文本:"sdmfhsgnshejfgnihaofhsrnihao",求模式集合在文本中所有可能出现的位置。
其运行原理是通过字典树来构建字典图实现自动跳转,构建失配指针实现多模式匹配。
【预处理】
建立一个 AC 自动机进行查询前,通常需要两个步骤:
- 基础的 Trie 树结构:将所有的模式串构成一棵 Trie 树
- KMP 的思想:对 Trie 树上所有的结点构造失配指针。
1.Trie 树的构建
AC 自动机中 Trie 树个构建与单纯的 Trie 树中的 insert 操作一样,只需要利用 Trie 树的结构,将模式串存入即可。
int tot=0;//编号
int trie[N][26];//字典树
int val[N];//字符串结尾标记
void insert(char * s){//插入模式串
int root=0;//字典树上当前匹配到的结点
for(int i=0;s[i];i++){
int id=s[i]-'a';//子节点编号
if(trie[root][id]==0)//若之前没有从root到id的前缀
trie[root][id]=++tot;//插入
root=trie[root][id];//顺着字典树往下走
}
val[root]++;
}
2.构造失配指针
1)失配指针
AC 自动机的失配指针与 KMP 的 next 数组,两者都是在失配的时候用于跳转的指针,不同的是,KMP 要求的是最长相同前后缀,AC 自动机要求的是相同后缀。
由于 KMP 只对一个模式串做匹配,AC 自动机要对多个模式串做匹配,因此,有可能 fail 指针指向的结点对应着另一个模式串,两个模式串的前缀不同,也就是说,AC 自动机在对匹配串做逐位匹配时,同一位上可能匹配多个模式串,因此,fail 指针会在字典树上来回穿梭,而不是像 KMP 的 next 数组在线性结构上跳转。
2)构造
失配指针(fail)的构造与 KMP 中 next 数组的构造相似,即利用部分已经求出的 fail 指针的结点推导出当前结点的 fail,具体使用 bfs 来实现:
首先考虑字典树中当前节点 u,u 的父节点是 p,p 通过字符 ch 的边指向 u,那么假设深度小于 u 的所有节点的 fail 指针都已求得,那么 p 的 fail 指针也可求得.
对于跳转到 p 的 fail 指针指向的节点 fail[p],有:
- 若结点 fail[p] 通过字符 ch 连接到的子结点 w 存在:
则让 u 的 fail 指针指向这个结点 w,相当于在 p 和 fail[p] 后加了一个字符 ch,即:fail[u]=w - 若结点 fail[p] 通过字符 ch 连接到的子结点 w 不存在:
则继续找 fail[fail[p]] 所指向的结点,重复上述过程,一直跳转 fail 指针直到根节点,若到达根节点时也不存在,那么就令 fail[u]=root
按照如上步骤,即完成了 fail 指针的构建。
如下图,对于字典树 {i,he,his,she,hers} 构建 fail 指针,黄色结点表示当前节点,绿色节点表示已经 bfs 遍历完毕的节点,橙色的边表示完成的 fail 指针,红色的边表示当前节点所指向的 fail 指针。
注:2 号结点的指针画错了,应为 fail[2]=0
如上图,以节点 6 为例分析 fail 指针的构建:
- 找到节点 6 的父节点 5,5 的 fail 指针指向 10,而节点 1 没有字符 s 连出边
- 跳到 10 的 fail 指针指向的节点 0,发现节点 0 有字符 s 连出的边,指向节点 7
- 因此 fail[6]=7
3)字典树与字典图
由于 fail 指针跳转的路径需要跳转很多次,因此将 fail 指针跳转的路径进行压缩(类似并查集的路径压缩),使得本来需要跳很多次的 fail 指针只跳一次。
在进行 bfs 时,若将根节点入队,则在第一次 bfs 的时,会将根节点的子节点的 fail 指针标记为本身,因此选择将根节点的子节点入队,由于 fail 指针初始化为 0,因此并不影响算法的正确性。
根节点的子节点入队后,每次取出队首元素 k,由于其 fail 指针已经求得,因此只需要求节点 k 的子节点的 fail 指针,则:
- 当字符 i 对应的子节点存在时,将这个子节点 fail 指针赋给 fail[k] 的字符 i 对应的节点
- 当字符 i 对应的子节点不存在时,将 fail[k] 的子节点直接赋成 k 的子节点
将上面的图改一下,蓝色结点表示 bfs 遍历到的结点 k,蓝色、黑色的边表示执行完路径压缩连出字典树的边,可以发现,众多交错的黑边将字典树转为了字典图(图中省略了连向根节点的边)。
在构建 fail 指针过程中得到的字典图,在查询时也会起到关键作用。
如上图,以节点 5 为例分析遍历时的情况:
- 如上图,本来应该跳 2 次才能找到 7 号节点,但是通过 10 号节点的黑色边直接通过字符 s 就找到了 7 号节点
- 因此,在路径压缩后,就能在 O(1) 的时间内对单个节点构造 fail 指针
4)实现
void build(){//构建fail指针域建立字典图
memset(fail,0,sizeof(fail));
queue<int>q;
for(int i=0;i<26;i++)//将根节点的子节点入队
if(trie[0][i])
q.push(trie[0][i]);
while(!q.empty()){
int k=q.front();//对于队首节点k,其fail指针已求得,现在要求的是他子节点的fail指针
q.pop();
for(int i=0;i<26;i++){//遍历字符集
if(trie[k][i]){//若字符i对应的子节点存在
fail[trie[k][i]]=trie[fail[k]][i];//将这个子节点fail指针赋给fail[k]的字符i对应的节点
q.push(trie[k][i]);
}
else
trie[k][i]=trie[fail[k]][i];//将fail[k]的子节点直接赋成k的子节点
}
}
}
【多模式匹配】
fail 指针是在匹配串同一个位置失败时的跳转指针,因此可以利用 fail 指针在同一个位置上进行多模式匹配,匹配完了,就在字典图上自动跳转到下一位置。
以下图为例,红色结点表示当前匹配到的结点 root,粉色箭头表示 root 在字典图上的跳转,蓝色的边表示成功匹配的模式串,蓝色的结点表示跳 fail 指针时的结点。其中的部分跳转,利用的就是新构建的字典图上的边,它也满足后缀相同,所以自动跳转到下一个位置。
int query(char *t){//对文本串进行匹配
int res=0;//存储结果
int root=0;//字典树上当前匹配到的结点
for(int i=0;t[i];i++){//对文本串进行遍历
int id=t[i]-'a';//子节点编号
root=trie[root][id];//在字典图中不断穿梭跳动
int j=root;
while(j&&val[j]!=-1){//利用fail指针找出所有匹配的模式串
res+=val[j];//累加到答案中
val[j]=-1;
j=fail[j];//fail指针跳转
}
}
return res;
}
【模版】
1.文本串中模版串总个数
int tot=0;//编号
int trie[N][26];//字典树
int val[N];//字符串结尾标记
int fail[N];//失配指针
void insert(char * s){//插入模式串
int root=0;//字典树上当前匹配到的结点
for(int i=0;s[i];i++){
int id=s[i]-'a';//子节点编号
if(trie[root][id]==0)//若之前没有从root到id的前缀
trie[root][id]=++tot;//插入
root=trie[root][id];//顺着字典树往下走
}
val[root]++;
}
void build(){//构建fail指针域建立字典图
memset(fail,0,sizeof(fail));
queue<int>q;
for(int i=0;i<26;i++)//将根节点的子节点入队
if(trie[0][i])
q.push(trie[0][i]);
while(!q.empty()){
int k=q.front();//对于队首节点k,其fail指针已求得,现在要求的是他子节点的fail指针
q.pop();
for(int i=0;i<26;i++){//遍历字符集
if(trie[k][i]){//若字符i对应的子节点存在
fail[trie[k][i]]=trie[fail[k]][i];//将这个子节点fail指针赋给fail[k]的字符i对应的节点
q.push(trie[k][i]);
}
else
trie[k][i]=trie[fail[k]][i];//将fail[k]的子节点直接赋成k的子节点
}
}
}
int query(char *t){//对文本串进行匹配
int res=0;//存储结果
int root=0;//字典树上当前匹配到的结点
for(int i=0;t[i];i++){//对文本串进行遍历
int id=t[i]-'a';//子节点编号
root=trie[root][id];//在字典图中不断穿梭跳动
int j=root;
while(j&&val[j]!=-1){//利用fail指针找出所有匹配的模式串
res+=val[j];//累加到答案中
val[j]=-1;
j=fail[j];//fail指针跳转
}
}
return res;
}
char P[N];
char T[N];
int main(){
int t;
scanf("%d",&t);
while(t--){
memset(trie,0,sizeof(trie));
memset(val,0,sizeof(val));
memset(fail,0,sizeof(fail));
tot=0;
int n;//模式串个数
scanf("%d",&n);
while(n--){
scanf("%s",P);//输入模式串
insert(P);//插入字典树中
}
build();//构建失配指针与字典图
scanf("%s",T);//输入文本串
int res=query(T);
printf("%d\n",res);
}
return 0;
}
2.文本串中单个模版串个数
int res[N];
struct AC_Automata{
int tire[N][26];//字典树
int val[N];//字符串结尾标记
int fail[N];//失配指针
int last[N];//last[i]=j表j节点表示的单词是i节点单词的后缀,且j节点是单词节点
int tot;//编号
void init(){//初始化0号点
tot=1;
val[0]=0;
last[0]=0;
fail[0]=0;
memset(tire[0],0,sizeof(tire[0]));
}
void insert(char *s,int v){//构造trie与val数组,v需非0,表示一个单词节点
int len=strlen(s);
int root=0;
for(int i=0;i<len;i++){
int id=s[i]-'a';
if(tire[root][id]==0){
tire[root][id]=tot;
memset(tire[tot],0,sizeof(tire[tot]));
val[tot++]=0;
}
root=tire[root][id];
}
val[root]=v;
}
void build(){//构造fail与last
queue<int> q;
for(int i=0;i<26;i++){
int root=tire[0][i];
if(root!=0){
fail[root]=0;
last[root]=0;
q.push(root);
}
}
while(!q.empty()){//bfs求fail
int k=q.front();
q.pop();
for(int i=0;i<26; i++){
int u=tire[k][i];
if(u==0)
continue;
q.push(u);
int v=fail[k];
while(v && tire[v][i]==0)
v=fail[v];
fail[u]=tire[v][i];
last[u]=val[fail[u]]?fail[u]:last[fail[u]];
}
}
}
void print(int i){//递归打印与结点i后缀相同的前缀节点编号
if(val[i]){
res[val[i]]++;
print(last[i]);
}
}
void query(char *s){//匹配
int len=strlen(s);
int j=0;
for(int i=0;i<len;i++){
int id=s[i]-'a';
while(j && tire[j][id]==0)
j=fail[j];
j=tire[j][id];
if(val[j])
print(j);
else if(last[j])
print(last[j]);
}
}
}ac;
char P[1000][1000];
char T[N];
int main(){
int n;
while(scanf("%d",&n)!=EOF&&n){
memset(res,0,sizeof(res));
ac.init();
for(int i=1;i<=n;i++){
scanf("%s",P[i]);
ac.insert(P[i],i);
}
ac.build();
scanf("%s",T);
ac.query(T);
for(int i=1;i<=n;i++)
if(res[i])
printf("%s: %d\n",P[i],res[i]);
}
return 0;
}