www.flybird.xyz
码龄11年
关注
提问 私信
  • 博客:22,996
    社区:441
    23,437
    总访问量
  • 9
    原创
  • 1,480,244
    排名
  • 15
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2013-08-26
博客简介:

u011832617的博客

查看详细资料
个人成就
  • 获得30次点赞
  • 内容获得15次评论
  • 获得103次收藏
创作历程
  • 1篇
    2021年
  • 7篇
    2019年
  • 1篇
    2018年
成就勋章
TA的专栏
  • 双目标定
    1篇
  • 深度学习
    7篇
  • 立体匹配
    4篇
  • 双目
    5篇
  • Pytorch
    2篇
兴趣领域 设置
  • 人工智能
    opencv
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

双目立体视觉论文阅读(1)STTR

STTR——《Revisiting Stereo Depth Estimation From a Sequence-to-Sequence Perspective with Transformers》论文链接:STTR代码链接:STTR本文从Seq2Seq的角度重新审视了深度估计问题,使用位置信息和注意力将cost volume construction替换为密集的像素匹配。表现SOTA!性能优于Bi3D、GwcNet和LEAStereo网络,代码刚刚开源!一.本文创新点:1. 放宽了固定视
原创
发布博客 2021.04.07 ·
1511 阅读 ·
1 点赞 ·
1 评论 ·
6 收藏

论文阅读笔记——DispSegNet: Leveraging Semantics for End-to-End Learning of Disparity Estimation from Stereo

写在前面:这篇文章,思路和Segstereo类似,也是利用语义信息,只是通过分割的方式,其中视差估计和语义分割两个任务高度耦合。DispSegNet采用两步细化过程:开始初始化的视差被语义分割网络细化,模型是无监督训练得到,其中立体图像对通过变换计算光度误差。以下是其结构图:整个过程包括:(a) 矫正过的立体图像.(b) 提取特征.(c)把对应特征串联在一起构成成本容积....
原创
发布博客 2019.12.16 ·
788 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

论文阅读笔记——Group-wise Correlation Stereo Network

写在前面:这篇文章的亮点,主要如下所示: 平衡了correlation和costvolume这两种方式, Correlation时间复杂度低,但搜索空间有限 Cost volume搜索空间大,但时间复杂度高 将需要做correlation的特征图进行通道分类,在每个组,计算相关图,获得多个匹配代价候选值,然后来得到cost ...
原创
发布博客 2019.10.24 ·
529 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文阅读笔记——DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch

这篇文章,是2019年新的ICCV的papper,文章典型的使用了PatchMatch的思路,使得最后的速度快了很多。主要思路是:首先利用一种新颖的可微Patch Match算法来获得稀疏的cost volume。 然后,我们利用此表示来了解每个像素的修剪范围,自适应地修剪了每个区域的搜索空间。 最后,利用图像引导的优化模块来进一步提高性能。 由于所有组件都是可区分的,因此可以以端到端的方式训练整...
原创
发布博客 2019.10.14 ·
4181 阅读 ·
3 点赞 ·
11 评论 ·
17 收藏

论文阅读笔记——StereoNet: Guided Hierarchical Renement for Real-Time Edge-Aware Depth Prediction

引言:谷歌实时端到端双目系统深度学习网络双目匹配可以得到环境中的三维深度信息,进而为机器人,无人车,VR等现实场景下的应用提供有力信息,在对安全验证比较高的人脸支付领域,三维人脸验证也正在逐渐取代安全性较低的二维人脸验证。近年来,深度学习双目系统匹配已经取得了很不错的进展,很多先进的网络性能已经超过传统方法。然而,深度学习双目系统匹配仍然在实用方面面临很多问题,其中一个问题便是无法做到推断...
原创
发布博客 2019.09.17 ·
1819 阅读 ·
1 点赞 ·
0 评论 ·
9 收藏

深度学习——神经网络基础知识总结

如何学会构建和设计网络多阅读别人的网络,多总结,多找其他网络的优缺点。卷积层(Conv Layer)的输出张量(图像)的大小和只用全连接相比,卷积层的两个主要优势在于参数共享和稀疏连接,O=输出图像的尺寸。I=输入图像的尺寸。K=卷积层的核尺寸N=核数量S=移动步长P=填充数输出图像尺寸的计算公式如下:输出图像的通道数等于核数量N。示例:Al...
原创
发布博客 2019.08.29 ·
1461 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文阅读笔记——Stereo R-CNN based 3D Object Detection for Autonomous Driving

首先,这篇文章是2019年很新颖的一篇文章,利用双目信息做3D目标检测,因为传统方法是用雷达和单目等去做,而这篇文章把双目信息,目标检测,对极几何等知识结合,提出了很新颖的检测思路,这是很值得我们关注的一点,也是一个更加符合人类思考流程的监测网络结构。亮点总结:Stereo R-CNN方法,并同时检测,关联左右目图像中的对象。 利用关键点和双目 Box 约束,形成一个3D Box 估计器...
原创
发布博客 2019.08.28 ·
1899 阅读 ·
6 点赞 ·
2 评论 ·
15 收藏

Pytorch中的contiguous()函数

这个函数主要是为了辅助pytorch中的一些其他函数,主要包含在PyTorch中,有一些对Tensor的操作不会真正改变Tensor的内容,改变的仅仅是Tensor中字节位置的索引。这些操作有:narrow(),view(),expand()和transpose()在运行这几个函数之前,需要先把Variable进行.contiguous()操作。这是因为:有些tensor并不是...
原创
发布博客 2019.08.21 ·
5482 阅读 ·
9 点赞 ·
0 评论 ·
28 收藏

运行OpenCV3.4.1的双目相机标定例程注释,OpenCV3.4.1+VS2017安装配置

新版本总是在迭代升级,目前opencv最新版本为3.4.1VS已经到了2017版本,由于opencv每个版本对应的VS都需要有不同的配置,这里也是鼓捣了好几天才完成配置,并且跑完这个双目标定的例程,期间踩了不少坑,下面贴出来分享给小伙伴,同时还有程序注释opencv安装:https://opencv.org/releases.htmlVS2017安装:https://www.visualstudi...
原创
发布博客 2018.04.06 ·
5326 阅读 ·
10 点赞 ·
1 评论 ·
33 收藏